Non-transplant Therapy for MDS

Bart Scott, MD
Associate Member, FHCRC
Associate Professor, UWMC
MDS Treatment Algorithm

Asymptomatic

Observation

Epo/G-CSF

Lenalidomide
Azacitidine

Decitabine
Investigational

Symptomatic

Bone Marrow Function

Transfusion

Low/Int-1

Survival

Blasts

Azacitidine
Decitabine
Investigational

Int-2/High

Intensive Chemotherapy
RIC SCT - Full Ablative

5q-

+8

5/7, 7q
Complex
Treatment Options for Lower-risk MDS

- Transfusion Support
- Growth Factors
- Lenalidomide/Revlimid
- Azacitidine
- Clinical Trial
MDS: Transfusion Therapy

- **Anemia**
 - **Packed red blood cells**
 - Adverse effects due to immune mechanisms
 - Iron overload
 - Volume overload

- **Neutropenia**
 - **Granulocyte transfusion**
 - Laborious, short-lived effect
 - Not widely available
 - Clinical utility unproven

- **Thrombocytopenia**
 - **Platelet transfusion**
 - Transfusion reactions
 - HLA sensitization
Growth Factors

Red cell growth factors
Medicare only pays for these if Hb < 10 g/dL
Safety concerns in solid tumors, not (yet) in MDS

White cell growth factors
No survival benefit but may help decrease infx. Sometimes combined with red cell factors

Platelet growth factors
New; risks still being defined in MDS
Reports of increased blasts in a few patients
Only FDA-approved for immune thrombocytopenia and AA

- Epoetin alfa (Procrit™)
- Darbepoetin alfa (Aranesp™)
- Filgrastim, G-CSF (Neupogen™)
- Pegfilgrastim (Neulasta™)
- Romiplostim (NPLate™)
- Eltrombopag (Promacta™)
Growth Factors in MDS

<table>
<thead>
<tr>
<th>Patient Criteria</th>
<th>Probability of Response¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion need < 2 units per mo and serum EPO < 500 units/L</td>
<td>74%</td>
</tr>
<tr>
<td>Only one of the above criteria</td>
<td>23%</td>
</tr>
<tr>
<td>Neither criteria</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Epo 10,000 u/day x 5 days + GCSF 75-300 mcg/day 3 x week¹
- Other studies suggest no benefit with adding GCSF²
- 10% marrow myeloblasts no benefit²
- GSCF not recommended for neutropenic prophylaxis³
 - Intermittent use in patients with severe infection and neutropenia
- Tepo-mimetics under investigation⁴
 - 46% platelet response, 2 patients progressed to AML

Epo-G vs. S.C.

Overall Survival by Treatment

MDS ≤ RAEB-1, hgb < 9.5, plt > 30,000, Fe RR 34% for ESA vs. 5.8% SC p=0.001
Crossover allowed after 4 months
No difference in Leukemic transformation
Responders lived longer than non-responders

Log Rank Test p = 0.28

Erythropoietin (EPO) + Granulocyte-Colony Stimulating Factor (G-CSF) Treatment Associated with Better Overall Survival: Comparison of Nordic Countries (3 Phase II trials 1990-1999) vs Untreated Italian Cohort

Survival*

AML evolution*

Nordic group: n=129
Italian group n=272

All patients Hgb <10g/dL or transfusion dependent

*WHO-group, karyotype, ANC, Plt, RBC U/month, age, gender
ATG Therapy in MDS

- Phase II study of ATG
 - 61 RA, RARS, RAEB (FAB)
 - Transfusion dependent
 - 40 mg/kg/day x 4 days

- 21/61 (34%) patients with major HI-E
 - Younger age <58
 - HLA - DR 15
 - Shorter duration of RBC tfn

Does ATG Prolong Survival?

Int-1 MDS ≤60 years

IST=ATG 40 mg/kg/day x 4 days + CSA 5-12 mg/kg/day

5.2 vs. >8.1 yrs
P=0.001

6.9 vs. >8.2 yrs
P=0.002

Immunosuppressive Therapy (IST): Summary

- Age is the strongest variable for IST response[1,2]
 - Pathogenetic difference in MDS of younger adults
- Responses are durable and may modify adverse effect of RBC-TI on OS[2]
- Karyotype may influence IST response and disease biology
 - Low frequency of IST response in del(5q)[2]
 - High response rate in trisomy 8[3]
 - NIH 8/17 (47%)
 - WT1 amplification with specific cellular response
 - Autoimmune hematopoietic suppression may select for +8 expansion

Lenalidomide (REVLIMID®, Celgene)

- No significant neurotoxicity, somnolence, or constipation
- Potent modulator of myelosuppressive properties

Lenalidomide in Transfusion-Dependent Patients With Low/Int-1 MDS (MDS-002/003)

Eligibility
RBC transfusion ≥ 2 U/8 wk
16 wk transfusion Hx
ANC > 500/μL
Platelets > 50,000/μL
de novo MDS
Low/Int-1 MDS

Lenalidomide
Dosing
10 mg po × 21/28 d
10 mg po qd

Week: 0 6 12 18 24

Primary endpoint: transfusion independence
Secondary endpoints: cytogenetic response, pathologic response, safety

MDS-003: del 5q31.1 (n=148)
MDS-002: other (n=214)

RESPONSE
Yes → Continue
No → Off Study

Raza et al. Blood 2008;111:86-93

MDS-003: 80%
MDS-002: 55%
Dose Reduction
5 mg qd
5 mg qod
MDS-002/003: Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>Grade ≥ 3 Adverse Events, %</th>
<th>Non-del(5q)</th>
<th>del(5q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Pruritus</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rash</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Lenalidomide: Duration of Transfusion Independence

- **Transfusion independence %**
 - Del(5q): 67
 - Non-del(5q): 26
- **Total transfusion response %**
 - Del(5q): 76
 - Non-del(5q): 43
- **Duration of independence**
 - Del(5q): ~2 years
 - Non-del(5q): 41 weeks

Key
- Green circles: Ongoing
- Red squares: Discontinued

Raza et al. *Blood* 2008;111:86-93
Lenalidomide in Transfusion-Dependent Patients With Low/Int-1 MDS MDS-004/005

Double-Blind Randomized Placebo Control Trial

- 2 randomized trials using lenalidomide for the treatment of patients with primary, lower-risk (IPSS low/Int-1–risk), del(5q)\(^b\) and non-del (5q)\(^a\) MDS with RBC-TD

MDS-005 Multicenter, Double Blind Phase 3 Study\(^1\)
(N = 239)\(^a\)

- **Lenalidomide**
 - 10 mg on days 1 to 28 (n = 160) 28-day cycles

- **Placebo**
 - (n = 79)

Primary endpoint: RBC-TI (≥ 8 weeks)

MDS-004 Multicenter, Randomized, Double-Blind Phase 3 Study\(^2\)
(N = 139)\(^b\)

- **Lenalidomide**
 - (n = 47)
 - 5 mg on days 1 to 28 28-day cycles

- **Lenalidomide**
 - (n = 41)
 - 10 mg on days 1 to 21 28-day cycles

- **Placebo**
 - (n = 51)

Primary endpoint: RBC-TI (≥ 26 weeks)

\(^a\) With or without additional chromosomal abnormalities.
\(^b\) Modified intent-to-treat population.

del, deletion; Int, intermediate; IPSS, International Prognostic Scoring System; MDS, myelodysplastic syndromes; RBC, red blood cell; TD, transfusion dependence; TI, transfusion independence.

MDS-004 Study Design

Double-blind phase^b: Len 5 mg or 10mg vs PBO

- **LEN**, orally
 - **5 mg/day** for 28 days of each 28-day cycle
- **LEN**, orally
 - **10 mg/day** for 21 days of each 28-day cycle
- Placebo

Responders (at least minor erythroid response at week 16):
- Continued double-blind treatment for up to 52 weeks, relapse or progression

Non responders:
- Discontinued double-blind treatment and entered open-label treatment or withdrew from study

- **Key inclusion criteria:** centrally-confirmed IPSS-defined Low- or Int-1-risk MDS with del(5q) +/- additional cytogenetic abnormalities, and RBC-transfusion dependency (no consecutive 56 days without transfusion within last 112 days)
 - Patients with ANC < 500 cells/mcL or platelet count < 25,000/mcL were excluded
- **Primary endpoint:** RBC-TI for ≥ 26 weeks (absence of transfusions during consecutive 26 weeks on treatment and increase hemoglobin > 1 g/dL from baseline
- **Secondary endpoints:** erythroid response, duration of RBC-TI, cytogenetic response, time to AML progression from randomization, and adverse events

^a Patients stratified by IPSS score and cytogenetic complexity prior to randomization.

^b Bone marrow assessments were performed at baseline, 12 weeks, and every 24 weeks thereafter. ANC, absolute neutrophil count; IPSS, International Prognostic Scoring System; LEN, lenalidomide; MDS, myelodysplastic syndromes; PBO, placebo; RBC-TI, red blood cell transfusion independence.

Consistent results were observed in the ITT population (N = 205).

Achievement of RBC-TI for ≥ 26 weeks was not affected by age, gender, FAB classification, IPSS risk, time from diagnosis, cytogenetic complexity, baseline platelet counts, or number of cytopenias at baseline.

Hemoglobin increased over time with a maximum median Hgb change in responders of LEN 5 mg of 5.1 g/dL and LEN 10 mg of 6.3 g/dL.

*P < 0.001 vs placebo. Bars represent 95% CI.

* mITT population defined as patients with centrally-confirmed MDS who received ≥ 1 dose (N = 138). CI, confidence interval; FAB, French-American-British; IPSS, International Prognostic Scoring System; Hgb, hemoglobin; IWG, International Working Group; LEN, lenalidomide; mITT, modified intent-to-treat; RBC-TI, red blood cell transfusion independence.

MDS-005 Lenalidomide in non-del 5q MDS

Table. Key efficacy data.

<table>
<thead>
<tr>
<th>Response</th>
<th>LEN (n = 160)</th>
<th>PBO (n = 79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC-TI ≥ 56 days, n (%)</td>
<td>43 (26.9)*</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Duration of RBC-TI ≥ 56 days, median (95% CI), weeks<sup>a</sup></td>
<td>32.9 (20.7–71.1)</td>
<td>NE (NE–NE)</td>
</tr>
<tr>
<td>RBC-TI ≥ 168 days, n (%)</td>
<td>28 (17.5)</td>
<td>0</td>
</tr>
</tbody>
</table>

^aResponding pts only.

[*]P < 0.001.

NE, not estimable.

Summary: Lenalidomide Treatment in Low-/ Intermediate-1–Risk MDS

- MDS-004/005 confirmed results of MDS-003/002\(^{[1,2]}\)
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (41% vs 17%)
 - No significant differences in hematological toxicity
 - The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count\(^{[3,4]}\)
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)\(^{[5]}\)

Randomized Phase II Study of Alternative Azacitidine Dose Schedules

Study Design (N = 151)

- 5-2-2: 75 mg/m² (n = 50)
- 5-2-5: 50 mg/m² (n = 51)
- 5: 75 mg/m² (n = 50)

Eligibility
- All FAB
- Cytopenia
- ECOG PS: 0-3

12 Cycles
- AZA x 5 days q4-6 wks

IWG 2000 HI

Baseline Demographics/Disease Characteristics for All Randomized Patient (N = 151)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>AZA 5-2-2 (N = 50)</th>
<th>AZA 5-2-5 (N = 51)</th>
<th>AZA 5 (N = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range)</td>
<td>73 (37-88)</td>
<td>76 (54-91)</td>
<td>76 (47-93)</td>
</tr>
<tr>
<td>Gender, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>56</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>RBC transfusion dependent, %</td>
<td>44</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>FAB, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>44</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>RARS</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>RAEB</td>
<td>28</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>RAEB-T</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CMMoL</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Hematologic Improvement

Patients counted only once for best response in an improvement category.

Minor improvement at top of HI columns.

Anemia Management Algorithm 2015:
Low- or Intermediate-1 Risk MDS

- Assess potential causes of anemia
- Supplement with iron, folate, vitamin B as needed
- RBC transfusion support for symptomatic patients

Adapted from NCCN. Clinical practice guidelines in oncology. MDS. v.2.2015.
Is Transfusion Dependency an Issue in MDS?

- Transfusion-dependent patients had a significantly shorter OS than transfusion-independent patients (HR: 2.16; \(P < .001 \) overall)

*Excludes isolated 5q-

Survival by Transfusion Burden

Serum Ferritin Is Predictive of Survival and Risk of AML in MDS

- Development of transfusional iron overload is a significant independent prognostic factor for overall survival and evolution to AML.

Prospective Chelation Study in Lower-Risk MDS: 48-Mo Update—OS

- 5-yr noninterventional registry study of 600 patients with lower-risk MDS and transfusional iron overload treated with or without chelation
- At 48 mos, chelated patients had significantly longer OS vs nonchelated

Median OS From Diagnosis, Mos
- Nonchelated (n = 337): 48.7
- Chelated (n = 263): 96.8
- Chelated ≥ 6 mos (n = 191): 102.5

Prospective 1-year phase 2 trial with deferasirox
Primary endpoint reduction in serum ferritin

Gatterman et al. Leuk Res. 2010;34(9):1143-1150
Gatterman et al. Haematologica 2012;97(9):1364-1371
MDS Patients Who Are Likely to Benefit Most From Management Iron Overload

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NCCN(^1)</th>
<th>MDS Foundation(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion status</td>
<td>▪ Received > 20 RBC transfusions</td>
<td>▪ Transfusion dependent, requiring 2 units/mo for > 1 yr</td>
</tr>
<tr>
<td></td>
<td>▪ Continuing transfusions</td>
<td></td>
</tr>
<tr>
<td>Serum ferritin level</td>
<td>▪ > 2500 μg/L</td>
<td>▪ 1000 μg/L</td>
</tr>
<tr>
<td>MDS risk</td>
<td>▪ IPSS: low or intermediate-1 risk</td>
<td>▪ IPSS: Low- or Int-1</td>
</tr>
<tr>
<td></td>
<td>▪ WHO: RA, RARS and 5q-</td>
<td>▪ WHO: RA, RARS and 5q-</td>
</tr>
<tr>
<td>Patient profile</td>
<td>▪ Candidates for allografts</td>
<td>▪ Life expectancy > 1 yr and no comorbidities that limit progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ A need to preserve organ function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Candidates for allografts</td>
</tr>
</tbody>
</table>

Treatment Options for Higher-risk MDS

• HCT
• Azacitidine/Vidaza
• Decitabine/Dacogen
• Clinical Trial
Methyltransferase Inhibitor (MTI) Induces DNA Hypomethylation and Gene Activation

- Azacitidine (AZA) is incorporated into DNA in lieu of cytosine residue
- Inactivates DMT
- Leads to formation of newly synthesized DNA with unmethylated cytosine residues
- Results in hypomethylation and transcription of previously quiescent genes

(N=358)
Physician Choice of 1 of 3 Conventional Care Regimens
(Best Supportive Care (BSC) or LDAC or 7+3 Chemo)

VIDAZA® or BSC
n=222

VIDAZA or LDAC
n=94

VIDAZA or 7+3 Chemo
n=42

VIDAZA (n=117)

BSC (n=105)

VIDAZA (n=45)

LDAC (n=49)

VIDAZA (n=17)

7+3 Chemo (n=25)
<table>
<thead>
<tr>
<th></th>
<th>VIDAZA® N=179</th>
<th>CCR N=179</th>
<th>CCR Regimens N=179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (yrs)</td>
<td>69</td>
<td>70</td>
<td>BSC, Only N=105</td>
</tr>
<tr>
<td>≥65 (%)</td>
<td>68.1</td>
<td>76.0</td>
<td>LDAC N=49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7+3 Chemo N=25</td>
</tr>
<tr>
<td>FAB (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAEB</td>
<td>58.1</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>RAEB-T</td>
<td>34.1</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td>CMMoL</td>
<td>3.4</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>IPSS (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int-1</td>
<td>2.8</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Int-2</td>
<td>42.5</td>
<td>39.1</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>45.8</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>WHO (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAEB-1</td>
<td>7.8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>RAEB-2</td>
<td>54.7</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td>CMMoL-1</td>
<td>0.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CMMoL-2</td>
<td>5.6</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>30.7</td>
<td>32.4</td>
<td></td>
</tr>
</tbody>
</table>

Numbers may not add up to 100%, some patient information unknown
AZA-001 Trial: VIDAZA® Significantly Improves Overall Survival (OS)

Log-rank \(P=0.0001 \)

\(HR=0.58 \) (95% CI: 0.43-0.77)

Cl=confidence interval; HR=hazard ratio; ITT=intent-to-treat.
AZA-001: Hematologic Improvement (2000 IWG)

AZA-001: Grade 3/4 Adverse Events

(≥ 2% of Patients)*

<table>
<thead>
<tr>
<th>Adverse Events, n (%)</th>
<th>Azacitidine (n = 175)</th>
<th>BSC Only (n = 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>159 (91)</td>
<td>70 (69)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>149 (85)</td>
<td>72 (71)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>26 (15)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Anemia</td>
<td>100 (57)</td>
<td>67 (66)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>22 (13)</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>8 (5)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>7 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>6 (3)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>6 (3)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Hematuria</td>
<td>4 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2 (1)</td>
<td>2 (2)</td>
</tr>
</tbody>
</table>

*When any grade of the reactions occurs in ≥ 5% of azacitidine-treated patients.

Randomized Phase III Study of Low-Dose Decitabine for Patients With Higher-Risk MDS

EORTC-06011

Eligibility criteria n=223:
• Intermediate- or high-risk MDS or CMML
• Age ≥ 60 years
• Blast cell count 11%-30% or ≤ 10% with poor cytogenetics

Stratification
- Cytogenetics risk group
- IPSS
- Primary vs secondary
- Study center

Decitabine n=119
15 mg/m² IV 4h q8h, d 1-3 q6w ≤ 8 cycles

Decitabine n=114
15 mg/m² IV 4h q8h, d 1-3 q6w ≤ 8 cycles

Supportive Care n=114

Response monitoring every 12 weeks
CR/PR/SD/HI

CR/PR/SD/HI

Response monitoring every 24 weeks
No PD

PD

Stop RX

Still CR

Reason for going off-protocol

<table>
<thead>
<tr>
<th>Reason</th>
<th>Supportive care N=114 (100%)</th>
<th>Decitabine N=119 (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal completion</td>
<td>19 (16.7%)</td>
<td>31 (26.1%)</td>
</tr>
<tr>
<td>Progression of disease</td>
<td>55 (48.2%)</td>
<td>40 (33.6%)</td>
</tr>
<tr>
<td>Toxicity</td>
<td>NA</td>
<td>19 (16.0%)</td>
</tr>
<tr>
<td>Prolonged cytopenia</td>
<td>NA</td>
<td>5 (4.2%)</td>
</tr>
<tr>
<td>Death</td>
<td>17 (14.9%)</td>
<td>11 (9.2%)</td>
</tr>
<tr>
<td>Refusal</td>
<td>14 (12.3%)</td>
<td>6 (5.0%)</td>
</tr>
<tr>
<td>Protocol violations</td>
<td>5 (4.4%)</td>
<td>3 (2.5%)</td>
</tr>
<tr>
<td>Ineligible</td>
<td>1 (0.9%)</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (2.6%)</td>
<td>3 (2.5%)</td>
</tr>
</tbody>
</table>

Median time to off-study: 112 days vs 180 days

EORTC-06011: Overall Survival with Decitabine Treatment

Median (months): 10.1 vs 8.5
HR = 0.88, 95% CI (0.66, 1.17)
Logrank test: p=0.38

No survival advantage for DAC?

- Number of treatments courses given
- Different populations and comparator groups
 - MDS duration
 - Cytogenetic risk groups
 - Performance status
- How the drug was given
- There is a true difference between aza and dac
Clinical Trials
Increased PD-L1 Expression in HMA Failure

Aza + Vorinostat
Responders n=7
Resistance n=11

PD-L1
p=0.08

PD-L2
p=0.23

Group 0: no PDL-2 expression induction
Group 1: PDL-2 expression induction

mRNA from PBMNC

Yang et al. Leukemia 2014;28:1280-88
Atezolizumab

Safety Evaluation

Cohort A
HMA R/R-MDS
Atezolizumab
1200 mg IV q3w (12 mo)
n = 10

Cohort B
HMA R/R-MDS
Induction (six cycles)
Atezolizumab: 840 mg IV q2w
Azacitidine: 75 mg/m² SC Days 1-7 q28d
Maintenance (6 mo)
Atezolizumab: 1200 mg IV q3w
n = 10

Cohort C1
1L MDS
Atezolizumab: 840 mg IV q2w
Azacitidine: 75 mg/m² SC Days 1-7 q28d
(treat until loss of clinical benefit)
n = 6

Expansion

Cohort C2
1L MDS
Atezolizumab: 840 mg IV q2w
Azacitidine: 75 mg/m² SC Days 1-7 q28d
(treat until loss of clinical benefit)
n = 14

Primary endpoint: ORR by IWG criteria
Overall Survival After AZA Failure (HR-MDS)

Median follow-up: 15 months

Median OS is 5.6 months
AZA Failure= no response, lost response, progression, intolerance

<table>
<thead>
<tr>
<th>Disease Status</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary failure*</td>
<td>229</td>
<td>55</td>
</tr>
<tr>
<td>Stable disease</td>
<td>91</td>
<td>24</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>138</td>
<td>31</td>
</tr>
<tr>
<td>Secondary failure†</td>
<td>164</td>
<td>36</td>
</tr>
<tr>
<td>Failure after CR</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>Failure after PR</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Failure after HI</td>
<td>120</td>
<td>27</td>
</tr>
<tr>
<td>AZA intolerance</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>Without ongoing response</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>During response to AZA</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

N=435

HR MDS post AZA failure OS by Salvage Therapy

Overall Survival (%)

Time Since AZA Failure (days)

Type of salvage	N	ORR	Median OS (months)
Unknown | 165 | NA | 3.6
Best supportive care | 122 | NA | 4.1
Low-dose chemotherapy | 32 | 0/18 | 7.3
Intensive chemotherapy | 35 | 3/22 | 8.9*†
Investigational therapy | 44 | 4/36 | 13.2*†
Allogeneic transplantation | 37 | 13/19 | 19.5*†

†P<0.001

OS and TFS After HMA Failure (LR-MDS)

HMA Failure= no response (6 cycles), lost response, progression to AML, intolerance

Median OS is 17 months

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Events</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS*</td>
<td>290</td>
<td>204</td>
<td>17</td>
</tr>
<tr>
<td>TFS*</td>
<td>290</td>
<td>201</td>
<td>15</td>
</tr>
<tr>
<td>OS</td>
<td>438</td>
<td>315</td>
<td>15</td>
</tr>
<tr>
<td>TFS</td>
<td>438</td>
<td>318</td>
<td>12</td>
</tr>
</tbody>
</table>

*Karyotype data available at time of failure

LR MDS post HMA Failure. OS by Salvage Therapy

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>Med OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>88</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>conventional</td>
<td>83</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>SCT</td>
<td>26</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>investigational</td>
<td>91</td>
<td>67</td>
<td>17</td>
</tr>
</tbody>
</table>

$p=0.001$

S110: Guadecitabine

- Cytidine
- 5-aza-2'-deoxycytidine (decitabine)
- 5-azacytidine
- Guanosine

Inhibits cytidine deaminase
347:SG-110 in MDS/CMML/AML after AZA failure

- GDAC 60 mg/m2/day Day 1-5 q 28 days
 - Median 3 cycles
- N=56; 15 refractory and 41 relapsed
- 9 responded (16%)
 - 1 CR, 2CRp, 5 marrow CR, 1 HI
- Median duration of response 9 months
- Median OS 6.7 mos
 - 33 died: 14 progression, 13 infection, 1 bleeding, 5 other

ASTRAL-2 Design

MDS or CMML Patients who failed or progressed on full course of prior **HMA** and any other prior active anticancer therapy

408 patients

Study treatment randomization 2:1

Guadecitabine
(n=272)
60 mg/m2/d x5 Q28d
+ Best Supportive Care

***Requires 6 cycles of treatment

Treatment Choice (TC)
(n=136)

Low dose Cytarabine (LDAC) **or**
20 mg/m2 SC or IV once daily for 14 days in 28 day cycles (other schedules are allowed per institutional and standard practices)

Intensive Chemotherapy (IC) 7+3 **or**
Cytarabine 100-200 mg/m2/day (7 days) and an anthracycline per institutional standard practice (3 days)

Best Supportive Care (BSC) only
Per institution standard/practice

Primary Analyses (OS) after at least 316 death events have occurred

Note: All treatment options (guadecitabine and TC) may include BSC options
Phase III ONTIME: Rigosertib in Higher-Risk MDS After HMA Failure

- Rigosertib: PLK and PI3K inhibitor; a novel synthetic benzyl styryl sulfone that is cytotoxic against a variety of human tumor cell lines

- Primary endpoint: OS (HR: 0.62)
- Secondary endpoints: IWG response, transformation to AML, infection, bleeding, QoL

Patients with higher-risk MDS (FAB, RAEB/t, CMML), relapsed/refractory after azacitidine or decitabine (planned N = 270)

Stratified by blast %
(5% to 19% vs 20% to 30%)

Wk 16

Continue treatment q4w until progression

Rigosertib (ON 01910.Na) + BSC
1800 mg/d x 3 days q2w
(n = 180)

Best Supportive Care
LoDAC, hydrea, GFs
(n = 90)

Garcia-Manero et al. Lancet Oncology; 2016;17:496-508
Subset analysis indicated improved responses with primary failure

ONTIME 2

Eligibility:
- MDS subtypes RAEB-1, RAEB-2, or RAEB-t
- Progression or failure to respond to HMA
- Total HMA treatment duration of ≤ 9 months and/or total ≤ 9 cycles in ≤ 12 months
- < 82 years of age

Stratification:
- VHR vs non-VHR per IPSS-R
- North America vs Europe vs Asia

Randomization:
- 2:1
- Rigosertib + best supportive care $N = 150$
- Physician’s Choice of Treatment + best supportive care $N = 75$

Primary Endpoint:
Overall Survival

Best supportive care = red blood cell and platelet transfusions, and growth factors (growth factors, granulocyte colony-stimulating factor (G-CSF), erythropoietin, and thrombopoietin)
U.S. treatment approaches to MDS

Overall proportion of recently diagnosed patients (n = 670) and range of established patients across six surveys (n = 3844) taking specific types of therapies at the time of the survey

- ESA (darbepoetin and/or erthropoietin): 58% (55-63%)
- Azacitidine (Vidaza): 16% (11-15%)
- G-CSF, GM-CSF or peg-filgrastim: 10% (8-11%)
- Lenalinomide (Revlimid): 8% (1-9%)
- Decitabine (Dacogen): 2% (0-4%)
- Thalidomide: 1% (2-5%)

Only 4% of recently dx or established patients were considered for transplant.

Only 1% of recently dx or established patients were enrolled into clinical trials.

Conclusions: Non-Transplant Therapy for MDS

- Transfusion support plus SC is an appropriate choice for some patients with MDS
- Growth factors remain the most common treatment choice for MDS
- IST is an appropriate choice for some patients with low/int-1 risk MDS
- Lenalidomide indicated for rec cell TD low/int-1 risk del (5q) MDS
- Aza has been shown to improve OS in patients with int-2/high risk MDS
- The role of iron-chelation remains controversial pending results of a RCT TELESTO
MDS Treatment Algorithm

Low-risk and Intermediate-1

Anemia / Neutropenia / Thrombocytopenia

Intermediate-2 and High-risk

HCT Candidate

Not HCT Candidate

Allo HCT

IC, Aza / Dec??

Host and disease factors

Conventional

RIC

Clinical Trial

Transfusion therapy ± Iron chelation

del 5q → Lenalidomide

Epo < 500 → ESA ± GCSF

Epo > 500 → ATG/CsA Lenalidomide Aza/Dec Clinical Trial

HCT Candidate

Clinical Trial

Intermediate-1

Clinical Trial