Patient-Tailored Therapy

Masumi Ueda, MD
Assistant Member, Fred Hutch
Assistant Professor, University of Washington

May 20, 2017

MDS Foundation

Educational Patient-Caregiver Forum

Objectives

Understand the factors that may influence a person's response to MDS therapy

 Discuss how the hypomethylating agents (azacitidine, decitabine) work

 Understand how patient tailored therapy can lead to more successful treatment

Patient A

69 yo man with RAEB-1 MDS. Bone marrow shows 5% blasts.

Diagnosed after presenting with low blood counts.

Treated with azacitidine 75 mg/m² for 7 days each month.

After 3 cycles, blood counts were normal. Bone marrow showed 2% blasts.

Sustained response for > 2 years.

Patient B

69 yo man with RAEB-1 MDS, bone marrow shows 5% blasts.

Diagnosed after presenting with low blood counts.

Treated with azacitidine 75 mg/m² for 7 days each month.

After 3 cycles, blood counts are still low.

Bone marrow shows 10% blasts.

Why did they respond so differently?

1) MDS or cancer cells are genetically different

 Each person's body processes drug differently (and leads to differences in hitting the target)

A key challenge is that we cannot accurately decipher between these possibilities.

What is Patient-Tailored Therapy?

Therapy should be **individualized** to:

- 1. Cancer cell genetics
- 2. How each person's body processes the drug (Pharmacodynamics)

3. Goals, beliefs, preferences

Genetic mutations in MDS – Example

In 944 MDS patients tested for a mutations in 104 genes, **89.5**% had at least one mutation

Each patient had on average 3 mutations (range, 0-12)

47 genes were mutated in >10% of patients (TET2, SF3B1, ASXL1, SRSF2, DNMT3A, RUNX1)

Genetic Diversity in MDS Cells

Mutation A

Mutation B

Mutation C •

Mutation D

Cancer Genomics

Tailor therapy based on cancer DNA

 If you have mutation in Gene A, you are likely to respond to Drug A

 If you have mutation in Gene B, you are <u>not</u> likely to respond to Drug A

Gene mutations associated with response to HMA:

- *TET2, DNMT3A, IDH1, IDH2,* miR-29b
- TP53

What is Patient-Tailored Therapy?

Tailored to:

1. Cancer cell(s) unique to each person

Pharmacodynamics: What each person's body does to the drug

How do HMAs work?

HMAs remove methylation

Drug needs to get inside MDS Cell and Target DNMT...

Did the drug get there?

Predicting Response to Therapy

If the drug did not reach its intended target, it has little chance of working (regardless of any mutations).

\bigcirc

Research Questions

Can we monitor levels of DNMT inside cancer cells to ensure we are reaching the drug target?

Is decreasing DNMT associated with improved response?

Can we <u>individualize</u> dosing and frequency based DNMT levels?

Goal: To make treatment more successful and safe.

Flow Cytometry

Uses antibody labeling and laser to detect protein levels in blood cells.

Protocol FH9783

Objective: To investigate the association between change in DNMT1 flow assay level pre- and post-azacitidine or decitabine treatment and response

Sample Collection Schedule:

	Baseline	Cycle 1 Days 5 & 15	Day 1 & 5 of each subsequent cycle	After Cycle 3
Blood	X	X	X	X
Marrow	Х			X

Patient Tailored Drug Dosing

By monitoring DNMT levels throughout treatment, we can tailor dose and frequency to each individual and make treatment more effective and safe.

Why a difference in response?

1) MDS or cancer cells are genetically different

2) Each person's body processes drug differently

Therapy tailored to each individual will lead to more successful treatment.

Thank you

Patients & Families

Fred Hutch

- Bart Scott
- Joachim Deeg
- Brent Wood
- Brenda Sandmaier
- Erlinda Santos

Case Comprehensive Cancer Center

- James Jacobberger
- Phillip Woost
- Marcos de Lima
- Yogen Saunthararajah (Cleveland Clinic)

Conquer Cancer Foundation of ASCO

