Molecular Advances in MDS

Alexey Aleshin MD, MBA Medical Oncology Fellow Stanford University

Learning Objectives

Next Generation Sequencing

MDS Genomics

Hereditary MDS

Future Directions

Genes, Genomes, Mutations

Sequencing: Disruptive Technology

Sequencing Costs Have Plummeted

Forbes , 2010

An Explosion in Genetic Knowledge

THE

HUMAN

GENOME

Thousands of genomic associations, many with clinical implications

Learning Objectives

Next Generation Sequencing

MDS Genomics

Hereditary MDS

Future Directions

Hematology / Oncology: An Imperfect Art

Given limited ability to predict responders, doctors today practice trial-and-error medicine **Trial-and-Error Oncology**

Adapted from: Spear et al. TRENDS in Molecular Medicine Vol.7 No.5 May 2001; PMC Nov 2006

The Solution: Personalized Medicine

"Personalized medicine" refers to the tailoring of medical treatment to the individual characteristics of each patient ...[by the] ability to classify individuals into subpopulations that differ in their susceptibility to a particular disease or their response to a specific treatment.

Traditional Classification

Genomic Classification

Adapted from: Aleshin A et al. Neoplasia. 2010

Two Sides of Mutations

Somatic mutations

- Occur in nongermline tissues
- · Cannot be inherited

Mutation in tumor only

Germline mutations

- Present in egg or sperm
- · Can be inherited
- Cause cancer family syndrome

Adapted from the National Cancer Institute and the American Society of Clinical Oncology

MDS is Genetically Not One Disease ...

Mutations Cluster with MDS Subtype

Adapted from: Cazzola et al, Blood 2013

How Do We Identify These Mutations?

Panels vs Single Gene

1. Test for Known Mutations

Mutations discovered through GWAS, exome, WGS studies

2. Fast turn around time

Molecular Diagnostics in MDS – Possible Uses

- Support / Refine Diagnosis
 - MDS with ring sideroblasts when number of ring sideroblasts < 15%
- Risk Stratification
 - Better refine risk for progression to AML or higher risk MDS
- Identify Potential Therapeutic Targets
 - IDH2 mutations -> enasidenib (Idhifa)
- Monitor Disease over Time
 - Identify evidence of clonal evolution
 - Detect emergence of high risk clones

Support / Refine Diagnosis

Adapted from: Kwok et al, Blood 2015

Risk Stratification (Different from Treatment Selection)

So far ONLY FEW are PREDICTIVE of

No

del5q

Present?

Years from start of therapy

treatment response

Revlimid

Less Likely to Work

Risk Stratification

SF3B1 Mutation and Favorable Prognosis

Blood. 2011 Dec 8; 118(24): 6239-6246.

Risk Stratification

ASXL1 Mutation and Worse Prognosis

Thol et al, JCO 2011

Disease Monitoring

Adapted from: Da Silva-Coelho et al, Nature Communications. 2017

Treatment Selection

- Splicesome mutation -> H3B-8800 splicesome inhibitor
- SF3B1 -> trial of luspatercept
- del 5q > lenalidomide

Adapted from: Coombs et al, Nat Rev Clin Oncol. 2016

Learning Objectives

Next Generation Sequencing

MDS Genomics

Hereditary MDS

Future Directions

Two Sides of Genetics ... Hereditary

...But only 10% is inherited

Hereditary Syndromes w/ Predisposition to MDS

- Familial MDS/AML syndromes
- Inherited Bone Marrow Failure Syndromes
- Familial cancer predisposition syndromes with increased risk for MDS/AML (BRCA1/2, TP53, etc)

Disorders rare, but increasingly being recognized and tested for in clinic

Benefits of Testing

- Modify cancer surveillance options and age of initial screening
- Suggest specific risk-reduction measures (*e.g.* considering early bone marrow transplant)
- Clarify and stratify familial cancer risks, based on gene-specific cancer associations, such as risk for colon cancer and sarcomas in Li-Fraumeni syndrome associated with TP53 mutations
- Offer treatment guidance (e.g. avoidance of radiation-based treatment methods for individuals with aTP53 mutation)
- Identify other at-risk family members
- Provide guidance with new gene-specific treatment options and risk reduction measures as they emerge

Ambry Genetics

Red Flags: If you or family member have one of these ...

- Pulmonary alveolar proteinosis
- Congenital deafness
- Hereditary lymphedema
- Skin and nail changes
- Sensorineural deafness
- Pulmonary fibrosis

- Neurofibromatosis
- Predisposition to opportunistic infections
- Multiple family members with MDS or AML
- Premature hair graying
- Thumb hypoplasia

Learning Objectives

Next Generation Sequencing

MDS Genomics

Hereditary MDS

Future Directions

From Bench to Bedside: New Clinical Workflow

Genetic testing fits seamlessly into current clinical workflow

