MDS Foundation's Educational Patient-Caregiver Forum

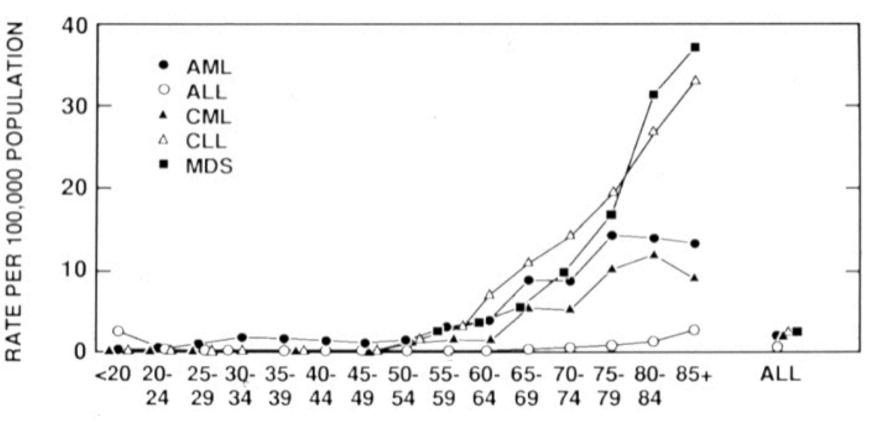
Stanford University Cancer Center Saturday, October 28, 2017

The MDSs and their Treatments Peter Greenberg, MD Molecular Advances in Understanding MDS Alex Aleshin, MD Bone Marrow Transplants for MDS Patients Lori Muffly, MD Quality-of-Life Session with Open Discussion Mary L. Thomas, RN, MS, CNS

The MDSs and their Treatments

Peter Greenberg, MD Professor of Medicine (Hematology) Stanford University Cancer Institute Director, Stanford MDS Center, Hematology Division

October 2017


MDS: Questions

- What is MDS?
- What does it mean for my life?
- Is there treatment for it?
- How should I be treated?
- When?
- Why?

Nature of MDS

- •Chronic disease
- Heterogeneous disorders
- •Symptomatic cytopenia(s)
- •Generally elderly patients
- Co-Morbid conditions
- Potential progression to AML
- Multiple potential therapies
- Impact on quality of life

AGE SPECIFIC RATES OF LEUKEMIAS AND MYELODYSPLASTIC SYNDROMES

AGES

Prognostic Features in MDS

<u>Clinical</u>

- CBC, marrow blasts, cytogenetics

- Age, PS, ferritin, LDH, β2M, marrow fibrosis
- Treatment/Response
- <u>Molecular</u>
 - Specific mutations
 - Number of mutations

MDS Morphologic Classifications

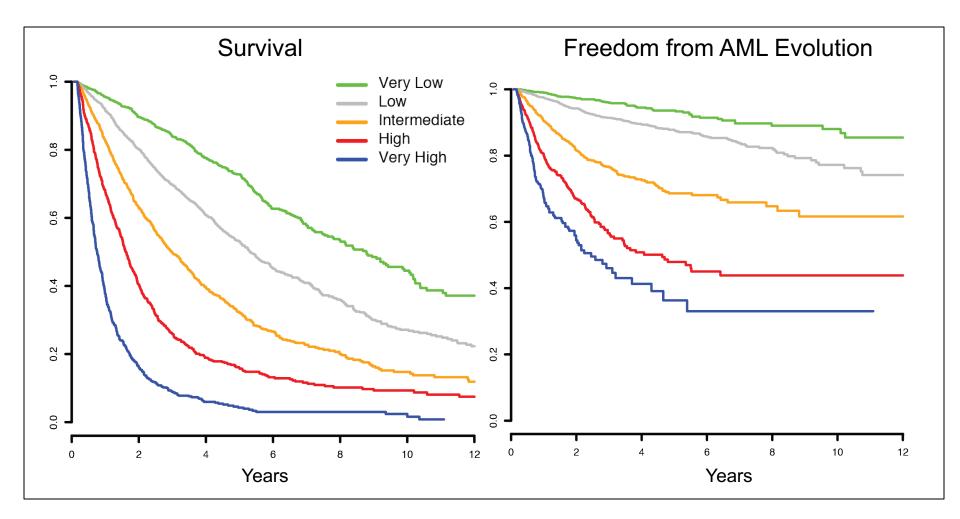
Marrow Blasts	2008 WHO /NCCN	2016 WHO/NCCN
<5%	RARS	MDS-RSSLD
"	RCUD, MDS-U	MDS-SLD
"	del(5q)	MDS-del(5q)
"	RCMD	MDS-MLD
<u>≥5-9%</u>	RAEB-1	MDS-EB1
≥10-19%	RAEB-2	MDS-EB2
20-30%	AML- MRC/ <mark>RAEB-T</mark>	AML- MRC/ <mark>RAEB-T</mark>
>30%	AML/AML	AML/AML

IWG-PM/IPSS-R Prognostic Classification

11 Countries: 7012 patients

- Austria
- Brazil
- Czech Rep
- France
- Germany
- Italy
- Japan
- Netherlands
- Scotland
- Spain
- USA

IPSS-R: Prognostic Features for Disease Status


Greenberg et al, IWG-PM, Blood 9/12, n=7012

- Bone marrow blasts: ≤ or >10%
- Cytogenetic groups: 5 groups
- Depth of abnormal blood counts

 hemoglobin, neutrophils, platelets
- Age
- Other predictors

performance status, serum tests (ferritin, LDH)

IPSS-R prognostic risk-based categories: Survival and risk of AML evolution

Greenberg et al, IWG-PM, Blood 9/2012; www.ipss-r.com

MDS: Incidence of Recurrent Mutations NCCN Practice Guidelines, Version 1.2018

- >20%: **ASXL1,** TET2, <u>SF3B1</u>*
- 10-20%: *RUNX1, DNMT3A, SRSF2*
- 5-10%: **TP53**, **EZH2**, U2AF1, NRAS, ZRSR2
- <5%: *CBL, ETV6, SETBP1, IDH1/2, JAK2,...*

Bold = Poor risk

*= Good risk

FDA Drug Approvals

- Epo 1993; Darbepoetin 2002
 - for chemotherapy-induced anemias
- GCSF 1996 ('90 SUH); Peg-GCSF 2002
 - for infection ('93 w/ Epo SUH)
- Azacytidine 2004
- Lenalidomide 2005 for (del)5q MDS
- Decitabine 2006
 - 2010: 5 day outpatient regimen
- Deferasirox 2005/2015; Deferiprone 2011
 - for iron chelation
- (Romiplostim, Eltrombopag 2017)

APPROACHES FOR TREATMENT OF MDS

- Clinically Relevant Cytopenia(s)
- Age: > <60 years old
- Performance Status: Excellent, Good, Poor
- Prognostic Risk Category: IPSS/IPSS-R
 - Lower risk: Hematologic improvement
 - Higher risk: Alter disease natural history
- Stem Cell Transplant candidate?
 - Risk category, Age, Performance status, Donor

www.nccn.org

W

ESA Responses in MDS

Santini et al, Blood 122: 2286, 2013; n=456, 29% RBC TD

ESA Response Score:Serum epo>2001Serum ferritin >3501IPSS-R:Very Low0Low1Int2High3

Score	0	1	2	3	4
Response	85%	80%	64%	40%	20%
IPSS-R	Very Low	Low	Intermediate	High	
Response	85%	68%	48%	31%	

MDS:Molecular Subgroup Treatments

Subgroup	Features	Treatment
SF3B1	Good risk, ring sideroblasts	Luspatercept*
Other splice genes	Categorizes MDS ontogeny	Splice gene modulators* (H3B-8800)
TP53	Poor risk	+/- Decitabine HDACis* p53 modulator PRIMA1/APR-246*
IDH2	Distinct mutant subgroup, T-LGL association	Enasidenib
Del(5q)	Mainly good risk	Lenalidomide

*Clinical trials

Potential Indications for Iron Chelation

■RBC transfusions: ≥20-40

Symptomatic anemia/Further RBC txn need

- -- mainly Low, Intermediate-1 IPSS or BMT candidate
- Evidence of organ dysfunction

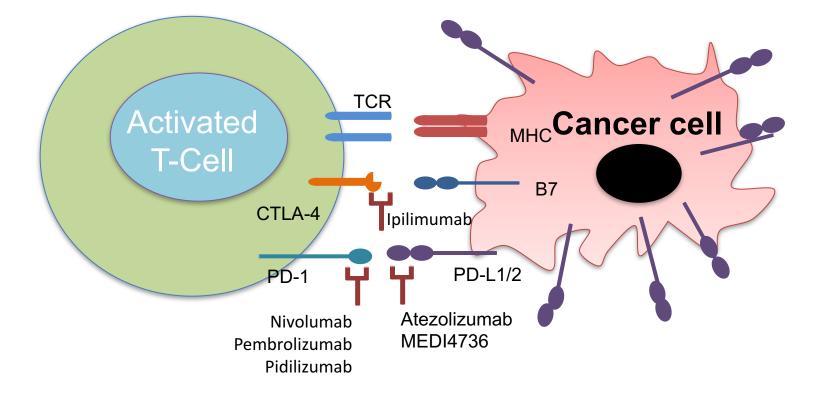
-- cardiac, hepatic, endocrine

■ Serum ferritin >2500→1000; ↑ Liver iron content

Rx: Deferasirox orally or Deferrioxamine SQ

Future MDS Molecular Classifications

- Diagnostic/Additive to Clinical Features
 - Specificity vs Non-clonal cytopenias ('mimics')/Biomarkers
 - Polymorphisms α disease susceptibility
- Prognostic/Additive to Clinical Features
 - Specific mutations & number of abnormalities
 - Predictive of treatment response
 - IWG-PM/Molecular global project


Pathogenetic

- Driver vs passenger mutations
- Gene expression, signaling pathways, epigenetic Δ

• Therapeutic

Identify & target biospecific driver lesions EARLY

Immune Checkpoint Inhibitors' Sites of Action

Rivera et al, Leuk Lymph 57:995, 2016

Frequency of Splicing Gene Mutations in Myeloid Malignancies

- MDS: 20-30% SF3B1, SRSF2, U2AF1, ZRSR2
- MDS with ring sideroblasts: 70-90% SF3B1
- AML: 40-60% SF3B1, SRSF2, U2AF1, ZRSR2
- CMML: 50% SRSF2

Stanford MDS Center: Biologically Focused Clinical Trials

- Lower risk: IPSS-R VL, Low, Int
- Deferasirox vs Placebo*
- Luspatercept (*TGFβ* inhibitor)*
- Splice gene modulator (H3)
- **Higher risk**: IPSS-R High, Very High

Central personnel: Savita Kamble Mark Santos

Alex Aleshin, MD

- AzaC & PD-L1 inhibitor (atezolizumab)
- Splice gene modulator (H3)

*Completed 10/17

MDS Information Resources

- MDS Foundation
- Aplastic Anemia and MDS Foundation
- Leukemia and Lymphoma Society
- National Comprehensive Cancer Network (NCCN)
- Stanford MDS Center

MDS: Directions

Clinical

Re-structure classification & treatment

- IWG-PM Molecular mutational characterization
- Biospecifically targeted treatment approaches
- Timing/type of Stem Cell Transplantation
- Include QOL in treatment evaluations
- **Biologic**: Abnormal stem cells/mutations
- Economic
 - Broad-based forums to evaluate cost effectiveness & potentially decrease costs