Myelodysplastic Syndromes: Disease Overview, New Therapies, and Treatment Options

Rafael Bejar MD, PhD

MDS Foundation

Patients & Caregivers LIVING with MDS Forums

February 3, 2018

Overview

- Introduction to MDS
- Clinical Practice
 - Making the diagnosis
 - Classification
 - Risk stratification
- Treatment Goals and Options
- Novel Therapies
- Questions and Answers

Low Blood Counts

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Myelodysplastic Syndromes

- Shared features:
 - Low blood counts
 - Clonal overgrowth of bone marrow cells
 - Risk of transformation to acute leukemia
- Afflicts 15,000 45,000 people annually

• Incidence rises with age (mean age 71)

MDS Incidence Rates 2000-2008

http://seer.cancer.gov. Accessed May 1, 2013.

Age and Sex in MDS

Overall incidence in this analysis: 3.4 per 100,000

Slide borrowed from Dr. David Steensma

Etiology of MDS

Slide adapted from Dr. David Steensma

Differentiation

Transformation

Making the Diagnosis

Minimal Diagnostic Criteria

Cytopenia(s):

- Low hemoglobin, or
- Low neutrophil count, or
- Low platelet count

 >10% dysplastic cells in 1 or more lineages, or

- 5-19% blasts, or
- Abnormal karyotype typical for MDS, or

MDS "decisive" criteria:

• Specific mutation typical of MDS

Other causes of cytopenias and morphological changes EXCLUDED:

- Vitamin B12/folate deficiency
- HIV or other viral infection
- Copper deficiency
- Alcohol abuse
- Medications (esp. methotrexate, azathioprine, recent chemotherapy)
- Autoimmune conditions (ITP, Felty syndrome, SLE etc.)
- Congenital syndromes (Fanconi anemia etc.)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN etc.)

Slide borrowed from Dr. David Steensma

Valent P et al *Leuk Res* 2007;31:727-736.

Diagnostic Overlap

Looking for Answers

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Bone Marrow Biopsy

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

From: NCCN Guidelines for Patients: MDS

The Bone Marrow

From: NCCN Guidelines for Patients: MDS

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

Bone Marrow Dysplasia

Chromosomes and Mutation Testing

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

Bone Marrow Biopsy

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Too many cells in the bone marrow Developing cells are dysplastic (abnormal) No extra 'blasts' seen Chromosomes are NORMAL

Classification of MDS Subtypes

World Health Organization MDS categories (2008)

Name	Abbreviation	Blood findings	Bone Marrow findings
Refractory cytopenia with	Refractory anemia (RA)		• Unilineage dysplasia (≥10% of cells in one
unilineage dysplasia	Refractory neutropenia (RN)	 Unicytopenia; occasionally bicytopenia No or rare blasts (<1%) 	 myeloid lineage) <5% blasts <15% of erythroid precursors are ring
(RCUD)	Refractory thrombocytopenia (RT)		sideroblasts
Refractory anemia with ring sideroblasts	RARS	AnemiaNo blasts	 ≥15% of erythroid precursors are ring sideroblasts Erythroid dysplasia only <5% blasts
MDS associated with isolated del(5q)	Del(5q)	 Anemia Usually normal or increased platelet count No or rare blasts (<1%) 	 Isolated 5q31 deletion Normal to increased megakaryocytes with hypolobated nuclei <5% blasts No Auer rods
Refractory cytopenia with multilineage dysplasia	RCMD	 Cytopenia(s) No or rare blasts (<1%) No Auer rods <1 x 10⁹/L monocytes 	 ≥10% of cells in ≥2 myeloid lineages dysplastic <5% blasts No Auer rods ±15% ring sideroblasts
Refractory anemia with excess blasts, type 1	RAEB-1	 Cytopenia(s) <5% blasts No Auer rods <1 x 10⁹/L monocytes 	 Unilineage or multilineage dysplasia 5-9% blasts No Auer rods
Refractory anemia with excess blasts, type 2	RAEB-2	 Cytopenia(s) 5-19% blasts ±Auer rods <1 x 10⁹/L monocytes 	 Unilineage or multilineage dysplasia 10-19% blasts ±Auer rods
MDS - unclassified	MDS-U	 Cytopenia(s) ≤1% blasts 	 Minimal dysplasia but clonal cytogenetic abnormality considered presumptive evidence of MDS <5% blasts

Swerdlow SH, Campo E, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edition. Lyon: IARC Press, 2008, page 89 (Section: Brunning RD et al, "Myelodysplastic syndromes/neoplasms, overview)".

World Health Organization MDS/MPN categories (2008)

Name	Abbreviation	Blood findings	Bone Marrow findings
Refractory anemia with ring sideroblasts and thrombocytosis	RARS-T	 Anemia No blasts ≥450 x 10⁹/L platelets 	 ≥15% of erythroid precursors are ring sideroblasts Erythroid dysplasia only <5% blasts proliferation of large megakaryocytes
Chronic myelomonocytic leukemia, type 1	CMML-1	 >1 x 10⁹/L monocytes <5% blasts 	 Unilineage or multilineage dysplasia <10% blasts
Chronic myelomonocytic leukemia, type 2	CMML-2	 >1 x 10⁹/L monocytes 5%-19% blasts or Auer rods 	 Unilineage or multilineage dysplasia 10%-19% blasts or Auer rods
Atypical chronic myeloid leukemia	aCML	 WBC > 13 x 10⁹/L Neutrophil precursors >10% <20% blasts 	 Hypercellular <20% blasts <i>BCR-ABL1</i> negative
Juvenile myelomonocytic leukemia	JMML	 >1 x 10⁹/L monocytes <20% blasts 	 Unilineage or multilineage dysplasia <20% blasts BCR-ABL1 negative
MDS/MPN – unclassified ('Overlap Syndrome')	MDS/MPN-U	 Dysplasia with myeloproliferative features No prior MDS or MPN 	Dysplasia with myeloproliferative features

Swerdlow SH, Campo E, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edition. Lyon: IARC Press, 2008, page 89 (Section: Brunning RD et al, "Myelodysplastic syndromes/neoplasms, overview)".

World Health Organization MDS categories (2016)

		1
Subtype	Blood	Bone marrow
MDS with single lineage dysplasia (MDS-SLD) ³	Single or bicytopenia	Dysplasia in ≥10% of one cell line, <5% blasts
MDS with ring sideroblasts (MDS-RS)	Anemia, no blasts	≥15% of erythroid precursors w/ring sideroblasts, or ≥5% ring sideroblasts if SF3B1 mutation present
MDS with multilineage dysplasia (MDS-MLD)	Cytopenia(s), <1 x 10º/L monocytes	Dysplasia in ≥10% of cells in ≥2 hematopoietic lineages, ± 15% ring sideroblasts, <5% blasts
MDS with excess blasts-1 (MDS-EB-1)	Cytopenia(s), ≤2%–4% blasts, <1 x 10º/L monocytes	Unilineage or multilineage dysplasia, 5%–9% blasts, no Auer rods
MDS with excess blasts-2 (MDS-EB-2)	Cytopenia(s), 5%–19% blasts, <1 x 10º/L monocytes	Unilineage or multilineage dysplasia, 10%–19% blasts, ± Auer rods
MDS, unclassifiable (MDS-U)	Cytopenias, ±1% blasts on at least 2 occassions	Unilineage dysplasia or no dysplasia but characteristic MDS cytogenetics, <5% blasts
MDS with isolated del(5q)	Anemia, platelets normal or increased	Unilineage erythroid dysplasia, isolated del(5q), <5% blasts
Refractory cytopenia of childhood	Cytopenias, <2% blasts	Dysplasia in 1–3 lineages, <5% blasts
MDS with excess blasts in transformation (MDS-EB-T) ²	Cytopenias, 5%–19% blasts	Multilineage dysplasia, 20%–29% blasts, ± Auer rods

Prognosis & Risk Assessment

MDS Risk Assessment

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

International Prognostic Scoring

System

Cytogenetic Risk Group	PSS Karyotype Abnormalities (7 categories)			
Good	Normal, -Y, del(5q), del(20q)			
Intermediate	+8, any other single or double abnormality			
Poor	Complex with \geq 3 abnormalities, anomaly of chromosome 7			

IPSS Parameter	Categories and Associated Scores				
Outogenetic Dick Crown	Good	Intermediate	Poor		
Cytogenetic Risk Group	0	0.5	1		
Bone Marrow Blast %	≤5%	5%-10%		11% - 20%	21% - 30%
bone marrow blast 76	0	0.5		1.5	2
Number of Octopopian	0 or 1	2 or 3			
Number of Cytopenias	0	0.5			
Definition of Cytopenias					
Hemoglobin < 10 g/dL					
Neutrophil Count < 1.80 x 10 ⁹ /L					
Platelet Count < 100 x 10 ⁹ /L					

IPSS Risk Group	Points	% of Patients		Time to 25% with AML, years
Low	0	33%	5.7	9.4
Intermediate-1	0.5 - 1	38%	3.5	3.3
Intermediate-2	1.5 - 2	22%	1.1	1.1
High	≥ 2.5	7%	0.4	0.2

Greenberg et al. Blood. 1997;89:2079-88.

International Prognostic Scoring System

IPSS-Revised (IPSS-R)

Cytogenetic Risk Group	IPSS-R Karyotype Abnormalities (19 categories)
Very good	del(11q), -Y
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)
Intermediate	+8, del(7q), i(17q), +19, +21, any single or double abnormality not listed, two or more independent clones
Poor	der(3q), -7, double with del(7q), complex with 3 abnormalities
Very Poor	Complex with > 3 abnormalities

IPSS-R Paramete	er						
Outographetic Dick Cra		Very good	Good	Intermediate	Poor	Very Poor	
Cytogenetic Risk Group	0	1	2	3	4		
Bone Marrow Blast	e/.	≤ 2%	> 2% - < 5%	5% - 10%	> 10%		
bone warrow blast	/0	0	1	2	3		r com
Hamoglabin (g/d)	`	≥ 10	8-<10	< 8		22-1	r.com
nemoglobin (g/dL	Hemoglobin (g/dL)	0	1	1.5			
Disastas Course (n. 10 ²		≥ 100	50 - < 100	< 50			
Platelet Count (x 10 ⁵	/L)	0	0.5	1			
Absolute Neutrophil C	ount	≥0.8	< 0.8				
(x 10 ⁹ /L)		0	0.5				

IPSS-R Risk Group	Points	% of Patients	Median survival, years	Time to 25% with AML, years
Very low	≤1.5	19%	8.8	Not reached
Low	>1.5-3	38%	5.3	10.8
Intermediate	> 3 - 4.5	20%	3	3.2
High	> 4.5 - 6	13%	1.6	1.4
Very High	>6	10%	0.8	0.73

Greenberg et al. Blood. 2012:120:2454-65.

Limitations of the IPSS-R

Risk group	Included karyotypes (19 categories)	Median survival, months	Proportion of patients in this group
Very good	del(11q), -Y	60.8	2.9%
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)	48.6	65.7%
Intermediate	+8, del(7q), i(17q), +19, +21, any single or double abnormality not listed, two or more independent clones	26.1	19.2%
Poor	der(3q), -7, double with del(7q), complex with 3 abnormalities	15.8	5.4%
Very poor	Complex with > 3 abnormalities	5.9	6.8%

Parameter	Categories and Associated Scores					
Cytogenetic	Very good	Good	Intermediate	Poor	Very Poor	
risk group	0	1	2	3	4	
Marrow blast	≤ 2%	> 2% - < 5%	5% - 10%	> 10%		
proportion	0	1	2	3		
Hemoglobin	≥ 10	8 - < 10	< 8			
(g/dL)	0	1	1.5			
Platelet count	≥ 100	50 - < 100	< 50			
(x 10 ⁹ /L)	0	0.5	1			
Abs. neutrophil	≥ 0.8	< 0.8				
count (x 10 ⁹ /L)	0	0.5				

Risk group	Points	% of Patients	Median survival, years	Time until 25% of patients develop AML, years
Very low	≤ 1.5	19 %	8.8	Not reached
Low	> 1.5 – 3	38 %	5.3	10.8
Intermediate	> 3 – 4.5	20 %	3.0	3.2
High	> 4.5 – 6	13 %	1.6	1.4
Very High	> 6	10 %	0.8	0.73

- Considers only UNTREATED patients
- IPSS-R does not consider somatic mutations
- Somatic mutations are common in MDS
- Several mutated genes have prognostic significance independent of the IPSS-R

MDS Risk Assessment

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Diagnosis:

MDS with single lineage dysplasia - **MDS-SLD**

WPSS - Very Low Risk IPSS - Low Risk IPSS-R- Very Low Risk

Mutations?

Gene Mutations in MDS

MDS Mutation Profiles

30% of MDS patients have a mutation in one of these genes

These mutations indicate more severe disease!

Bejar et al. NEJM. 2011;364:2496-506.

Bejar et al. JCO. 2012;30:3376-82.

Impact of Mutations by IPSS Group

Impact of Mutations by IPSS-R Group

Prognostic Mutations by Blast % (<5%)

Prognostic Mutations by Blast % (5-30%)

Clinical Sequencing and Banking

Clinical Information Viable Cells Tumor DNA/RNA Germline DNA

Targeted Massively Parallel Sequencing

Epigenetic Regulator	Splicing Factor	Transcription Factor	Kinase Signalling	Other
ASXL1	LUC7L2	CEBPA	BRAF	CDH11
ATRX	PRPF40B	ETV6	CBL	CUL1
BAP1	PRPF8	GATA2	CBLB	CUX1
BCOR	SF1	MLL	FLT3	FMN2
BCORL1	SF3A1	PHF6	JAK2	GNAS
DNMT3A	SF3B1	RUNX1	KIT	MYBL2
EED	SRSF2	TP53	KRAS	NPM1
EZH2	U2AF1	WT1	MPL	RAD21
IDH1	U2AF2		NF1	UMODL1
IDH2	ZRSR2		NRAS	ZSWIM4
JARID2			PTEN	
SETBP1			PTPN11	
SUZ12			SH2B3	
TET2				

Biorepository

Extensive Genotypic Annotation

Risk Adapted Patient Specific Therapy

Treatment Options for MDS

Observation **Erythropoiesis stimulating agents** Granulocyte colony stimulating factor Iron chelation Red blood cell transfusion Platelet transfusion Lenalidomide Immune Suppression Hypomethylating agent Options Stem cell transplantation

Clinical Trials – always the best option

MDS Treatment is Highly Risk Stratified

Lower Risk

- Observation
- EPO
- Lenalidomide
- Immune suppression
- Iron Chelation

Higher Risk

- Azacitidine
- Decitabine
- Allo-HSCT
- Clinical Trials

Treating Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

- 1. Do I need to treat at all?
 - No advantage to early aggressive treatment
 - Observation is often the best approach

- 2. Are transfusions treatment?
 - No! They are a sign that treatment is needed.

Guidelines for Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

Treating Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

What if treatment is needed?

1. Is my most effective therapy likely to work?

- Lenalidomide (Revlimid)

In del(5q) – response rates are high

50%-70% respond to treatment

Median 2-years transfusion free!

Treating Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

Is my second most effective therapy likely to work?

- Red blood cell growth factors
- Erythropoiesis Stimulating Agents (ESAs)
- Darbepoetin alfa (Aranesp)
- Epoetin alfa (Procrit, Epogen)
- Lance Armstrong Juice \rightarrow EPO

Erythropoiesis Stimulating Agents

Primary Goal: to improve QUALITY OF LIFE

ESAs – act like our own erythropoietin

Serum EPO level (U/L)	RBC transfusion requirement
<100 = +2 <i>pts</i>	<2 Units / month = +2 <i>pts</i>
100-500 = +1 pt	≥2 Units / month = <i>-2 pts</i>
>500 = -3 pts	

Total Score	Response Rate
High likelihood of response: > +1	74% (n=34)
Intermediate likelihood: -1 to +1	23% (n=31)
Low likelihood of response: < -1	7% (n=39)

Hellstrom-Lindberg E et al Br J Haem 2003; 120:1037

Treating Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

Is a combination of LEN +/- ESA likely to work? In non-del(5q) MDS patients:

Santini V, et al. J Clin Oncol. 2016;34:2988-2996.

Toma et al, Leukemia. 2016 Apr;30(4):897-905

Treating Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

- What my next most effective therapy?
 - Immunosuppression

Some MDS patients have features of aplastic anemia

- Hypoplastic bone marrow (too few cells)
- PNH clones
- Certain immune receptor types (HLA-DR15)

Immune Suppression for MDS

Primary Goal: to improve QUALITY OF LIFE

Swiss/German Phase III RCT of ATG + Cyclosporin (88 patients)

Mostly men with Lower Risk MDS

CR+PR: 29% vs. 9%

No effect on survival

Predictors of Response:

- hypocellular aspirate
- lower aspirate blast %
- younger age
- more recent diagnosis

Passweg, J. R., A. A. N. Giagounidis, et al. (2011). JCO 29(3): 303-309.

Iron Balance and Transfusions

Daily intake 1.5 mg (0.04%) Tightly regulated

> Daily losses only 1.5 mg (0.04%) Not regulated!

3-4 grams of Iron in the body

Every three units of blood

What About Iron Chelation?

- More transfusions and elevated ferritin levels are associated with poor outcomes in MDS patients.
- Are these drivers of prognosis or just reflective of disease?
- Retrospective studies suggest survival advantage!
- small prospective and large population based Medicare studies show survival benefit, INCLUDING hematologic responses (11-19%).

I consider treatment in lower risk, transfusion dependent patients with long life expectancy after 20+ transfusions.

How to Chelate Iron

Three ways are FDA approved:

- Deferoxamine (Desferal) subcutaneous pump 8-12 hrs/day
- Deferasirox (Exjade/Jadenu) powder/pill once per day
- Deferiprone (Ferriprox) oral pill form 3x per day

But side effects and adverse events can be significant! Deferasirox – renal, hepatic failure and GI bleeding Deferiprone – agranulocytosis (no neutrophils!)

Guidelines for Lower Risk MDS

Primary Goal: to improve QUALITY OF LIFE

1. Do I need to treat?

- symptomatic cytopenias
- 2. Is LEN likely to work?
- 3. Are ESA likely to work?
- 4. Is IST likely to work?
- 5. Think about iron!
- 6. Consider AZA/DEC
- 7. Consider HSCT or clinical trial!

- del(5q) or after ESA
- Serum EPO < 500
- hypocellular, DR15, PNH
- 20 or more transfusions

Novel Treatments for Lower Risk MDS

Oral Azacitidine

Oral Azacitidine – in Phase III clinical trials

- more convenient
- similar response rates
- more GI side effects

May be more effective as it can be taken longer

Low Dose Azacitidine/Decitabine

Decitabine 20 mg/m2 intravenously daily for 3 days - 60% dose - 70% ORR Azacitidine 75 mg/m2 intravenously daily for 3 days - 43% dose - 49% ORR

Jabbour et al., *Blood* 2017 130:1514-1522.

Platelet Growth Factors

Eltrombopag or Romiplostim - TPO mimetics

Eltrombopag and Romiplostim - approved, but not in MDS

Initial concern about increasing blasts and risk of AML

Follow-up suggests Romiplostim safe in lower risk patients

Mittleman M et al ASH Abstracts, 2013. Abstract #3822

Kantarjian H et al ASH Abstracts, 2013. Abstract #421

Luspatercept

Luspatercept

Promoting Red Cell Production

Luspatercept (ACE-536) and Sotatercept (ACE-011)

Promoting Red Cell Production

Luspatercept (ACE-536) and Sotatercept (ACE-011)

(activated Smad protein)

Increase in Mean Hemoglobin in LTB Patients with > 3 Months of Treatment (Extension Study)

11/13 (85%) HI-E responders; median time to response: 6 weeks

Guidelines for Lower Risk MDS

Special Considerations:

Transfusion Dependence

- Indication for treatment – even with AZA/DEC, consider chelation

Del(5q)

- High response rate to LEN even if other abnormalities

Serum EPO level

- Used to predict EPO response, > 500 \rightarrow unlikely to work

Indication for G-CSF

- used to boost EPO, not for primary neutropenia

Immunosuppresive Therapy

- ≤ 60y, hypocellular marrow, HLA-DR15+, PNH clone

Acknowledgements

MDS Center of Excellence at UC San Diego

Marla McArdle **Jennifer Galvan Edward Ball** Matthew Wieduwilt **Carolyn Mulroney Januario Castro Aaron Goodman Sandy Shattil Catriona Jamieson Erin Reid** Natalie Galanina Lynn Bemiller

Soo Park - Bejar Clinic **Olivia Reynolds** Elizabeth BroomeHuanyou Wang - Hematopathology **Peter Curtin** - BMT Group **Divya Koura Caitlin Costello Dimitrios Tzachanis** John Adamson - Hematology Group **Michael Choi Tom Kipps** Annette Von Drygalski

Tiffany Tanaka

Bejar Lab

Tim Luger Tiffany Tanaka Emily Wheeler Robyn Raban

Soo Park **Brian Reilly** Armon Azizi

To all of our AMAZING PATIENTS and our INFUSION CENTER nurses and staff!

High Risk MDS and Novel Therapies: What's on the Horizon?

Rafael Bejar MD, PhD

MDS Foundation

Patients & Caregivers LIVING with MDS Forums

February 3, 2018

Overview

- Treatment of Higher Risk MDS
- Stem Cell Transplanation
- Novel Drug Therapies
- Immune Therapies

Low Blood Counts

71 year-old man with big red cells and low blood counts that developed over the past 6 months.

Normal Range 7.9 1.9 45

Low Blood Counts

71 year-old man with big red cells and low blood counts that developed over the past 6 months.

Way too many cells in the bone marrow 4% blasts in aspirate

Dysplasia in all three cell types

Normal Karyotype (chromosomes ok)

Treatment of Higher Risk MDS

Guidelines for Higher Risk MDS

Goal: to improve DURATION OF LIFE

Hypomethylating Agents

Inhibitors of DNA methyl transferases:

Both incorporate into DNA and cause hypomethylation (DEC > AZA)

AZA preferentially causes DNA damage and induces apoptosis

Azacitidine

AZA-001 Phase III: AZA vs. Id-ARA-C vs. supportive care

Azacitidine Response:

ORR: ~50%

CR: ~17%

Median time to response: 3 cycles (81% by cycle 6)

Decitabine

Decitabine Phase III Trial

Dosed q8h x 3 days per 28 days

CR: 17%

CR+PR: 30%

ADOPT Trial and 3-Schedule Trial Dosed q24h x 5 days per 28 days CR: 17% CR+PR: 32%

ORR: 52% (+ heme response)

Best response: 50% at 2 cycles

Major Toxicity:

Neutropenia: 31% (FN 11%) Thrombocytopenia: 18%

HMA Clinical Pearls

Azacitidine and Decitabine are imperfect drugs:

- Treatment is intensive 5 to 7 days evey 4 weeks
- Overall response rate is only 45% and CR rate is ~15%.
- Responses can take 4-6 months to appear!
- Counts get worse for EVERYONE initially expected
 - Risks include neutropenic fever, bleeding, new transfusion requirements

But, they're not all bad:

- HMAs are generally well tolerated
 - No hair loss or mucositis
 - Little to no nausea or vomiting
 - Common side effects are fatigue and constipation (Zofran ?)

Guidelines for Higher Risk MDS

Goal: to improve **DURATION OF LIFE**

Special Considerations:

Refer for Transplant Early

- Even patients in their 70's can benefit from RIC transplant

AZA > DEC (for now)

- AZA has been shown to have a survival advantage, DEC has not (yet)

Don't forget Quality of Life

- Consider treatment palliative and weigh against patient needs

Look for Clinical Trials

- Few option after AZA are available and none are approved

Outcomes After Azacitidine

Reasons for "failure" in azacitidine failure study

9% didn't tolerate AZA (69% were not responding, 31% had an initial response)

55% primary failure (progression in 60%, stable disease without response in 40%)

36% secondary failure after initial response (best response: CR 20%, PR 7%, HI 73%)

Outcomes after failure

Median overall survival for whole cohort post-AZA: 5.6 months

2 year survival: **15%**

Favorable factors: female, younger (<60), better risk karyotype, <10% blasts, some response to azacitidine

Comparison to decitabine failures @ MDACC: median survival 4.3 months, n=87

Slide borrowed from Dr. David Steensma

Prébet T et al, *J Clin Oncol 2011;* Aug 20;29(24):3322-7. Epub 2011 Jul 25. Jabbour E et al, *Cancer* 2010; 116:3830–3834.

Outcomes After Azacitidine

- Data available on 435 pts
 - from AZA001, J9950, J0443, French compassionate program
- Overall median survival after azacitidine failure: 5.6 months

Subsequent therapy	Number of patients (%)	Median survival
Allogeneic transplant	37 (9%)	19.5 months
Investigational therapy (e.g. IMiD, HDACi, other)	44 (10%)	13.2 months
Intensive cytotoxic therapy (e.g., 3&7)	35 (8%)	8.9 months
Low-dose chemotherapy (e.g. LDAC, 6-MP)	32 (7%)	7.3 months
Palliative / supportive care	122 (28%)	4.1 months
Subsequent therapy unknown	165 (38%)	3.6 months

Prébet T et al *J Clin Oncol* 2011; 29:3322-7 Jabbour E et al *Cancer* 2010;116(16):3830-4

Treatment of Higher Risk MDS

We need **BETTER** therapies!

We need **MORE** therapies!

Stem Cell Transplantation

Stem Cell Transplantation

The Allogeneic Transplant Process

Collection

Stem cells are collected from the patients bone marrow or blood.

2 Processing

Bone marrow or periferal blood is taken to the processing laboratory where the stem cells are concentrated and prepared for the freezing process

3 Cryopreservation

Bone marrow or blood is preserved by freezing (cryopreservation) to keep stem cells alive until they are infused into the patient's bloodstream.

Thawed stem cells are infused into the patient.

Chemotherapy

High dose chemotherapy and/or radiation therapy is given to the patient.

Trends in Transplantation

Goal of Hematopoietic Stem Cell Transplantation:

#1) Replace a dysfunction host hematopoietic system with normal, healthy donor marrow.

#2) Allow the donor immune system to destroy the abnormal, diseased host cells (MDS).

Allogeneic Stem Cell Transplantation for MDS

<5% of patients with MDS currently undergo allogeneic SCT

"Only curative therapy"

Patients who go in to RIC allo SCT with <10% blasts appear to have lower relapse

Optimal timing, pre-transplant therapy, conditioning unclear; usually reserved for IPSS Int-2/High (IBMTR Markov analysis)

Slide borrowed from Dr. David Steensma

Cutler C et al *Blood* 2004; 104(2):579-85 Sekeres M et al *JNCI* 2008;100(21):1542-51.

Obstacles to Transplantation

Graft Rejection

need to suppress the host immune system

Toxicity

- infection
- organ damage
- graft versus host disease

Finding a Donor

- siblings match only 25% of the time
- and are often too old or ill to donate

Overcoming Obstacles

Avoiding Graft Rejection

- better approaches to immune suppression

Less Toxicity

- better supportive care
- better antigen matching
- reduced intensity conditioning

Alternative Sources for Stem Cells

- haploidentical "half" match
- umbilical cord blood stem cells

Reduce intensity conditioning transplantation in <u>Older</u> Patients with *De Novo* MDS

Koreth J, et al. J Clin Oncol. 2013.

Trends in Allogeneic Transplants by Transplant Type and Recipient Age* 1990-2010

* Transplants for AML, ALL, NHL, Hodgkin Disease, Multiple Myeloma

Allogeneic Transplants for Age > 20yrs, Registered with the CIBMTR, 1993-2010 - by Donor Type and Graft Source -

TP53 mutated MDS Poor prognosis due to early relapse

Novel Treatments for Higher Risk MDS

Guidelines for Higher Risk MDS

Goal: to improve **DURATION OF LIFE**

Special Considerations:

Refer for Transplant Early

- Even patients in their 70's can benefit from RIC transplant

AZA > DEC (for now)

- AZA has been shown to have a survival advantage, DEC has not (yet)

Don't forget Quality of Life

- Consider treatment palliative and weigh against patient needs

Look for Clinical Trials

- Few option after AZA are available and none are approved

Rigosertib Phase III Result

	Rigosertib N = 199	BSC N = 100
Number (%) of deaths	161 (81%)	81 (81%)
Median follow-up (months)	17.6	19.5
Median survival (months)	8.2	5.9
95% CI	6.0 - 10.1	4.1 - 9.3
Stratified HR (rigosertib/BSC)	0.87	
95% CI	0.67 - 1.14	
Stratified log-rank p-value	0.33	

ONTIME Trial: Median Overall Survival for Pts with Primary HMA Failure - Blinded, Centralized Assessment

Per Prebet 2011, "Primary HMA Failure" was defined as either no response to or progression during HMA therapy

ASH 2014

SGI-110 Phase II Results

	60 mg/m2 (n=53)	90 mg/m2 (n=49)
8-week RBCs Transfusion Independent n (%)	7/27 (26%)	5/24 (21%)
8-week Platelet Transfusion Independent n (%)	4/13 (31%)	5/15 (33%)

Oral Decitabine + CDAi

Pharmacokinetics

Decitabine PK profile, IV vs oral, without/with CDAi

Pevonedistat

Has activity in AML when combined with azacitidine

*Best percent change from baseline >100%. SD represents those evaluations which did not qualify for response or PD.

Now in a phase III clinical trial in MDS/CMML/sAML

Other Epigenetic Drugs

Immune Regulation

Phase I/II Trial will be opening here at UCSD

Immunologic Therapy

Plasma B-cell

Chimeric Antigen Receptor

Immunologic Therapy

From Genetic Biomarkers to Disease Targets

PersImmune

Acknowledgements

MDS Center of Excellence at UC San Diego

Marla McArdle **Jennifer Galvan Edward Ball** Matthew Wieduwilt **Carolyn Mulroney Januario Castro Aaron Goodman Sandy Shattil Catriona Jamieson** Erin Reid Natalie Galanina Lynn Bemiller

Soo Park **Olivia Reynolds** Elizabeth BroomeHuanyou Wang - Hematopathology **Peter Curtin Divya Koura Caitlin Costello Dimitrios Tzachanis** John Adamson **Michael Choi Tom Kipps** Annette Von Drygalski **Tiffany Tanaka**

- Bejar Clinic

- BMT Group

- Hematology Group

Bejar Lab

Tim Luger Tiffany Tanaka Emily Wheeler Robyn Raban

Soo Park **Brian Reilly** Armon Azizi

To all of our AMAZING PATIENTS and our INFUSION CENTER nurses and staff!

