Myelodysplastic Syndrome

A Family-Oriented Approach on Diagnosis and Treatment Options

Cecilia Arana Yi, MD Assistant Professor MDS Patient & Family/Caregiver Forum March 3, 2018

University of New Mexico Comprehensive Cancer Center

Quote of the Day

"There are two primary choices in life: to accept conditions as they exist, or accept the responsibility of changing them"

- Dennis Waitley

Overview

- Introduction to MDS
- Pathophysiology
- Diagnosis and Risk Stratification
- Treatment Options
- Future Directions/Challenges

What is MDS? (What Dr. Google says?)

 MDS are a group of blood cancers in which the bone marrow does not produce healthy blood cells.

 Is considered a "bone marrow failure disorder".

 Risk of transformation to acute leukemia.

MDS Case : Low blood counts

• Mr. T is a 70 year-old male with worsening anemia and thrombocytopenia over the past 2 years.

 Patient words: "I am exhausted"; "I feel dizzy"; "I have bruises in my arms"

Aberrant hematopoiesis

Elias HK, et al Oncogene 2013, 1-12

MDS Features

- Estimated 15,351 new cases from 2009 to 2013.
- Incidence: 4.9 per 100,000.
- Median age 71 M>F
- Clonal disorder: Multi-lineage hematopoietic progenitor.
- Ineffective hematopoiesis with cytopenias
- Symptoms: Fatigue, infection or bleeding

Pathophysiology of MDS

MDS Basic Concepts

MDS Pathogenesis

- Incompletely understood
- Stepwise acquisition of genetic mutations or after exposure to agents.

De novo (80%)

- Primary

No history of previous cancer/radiation
 Increased risk with aging

Secondary MDS (20%)

- Previous chemo/radiation
- DNA alkylating agents peaks 5-7 years
- Topoisomerase
 inhibitors peaks 1-3
 years
- Prognosis is usually poor

Molecular Pathogenesis: The Clone Wars

Harada et al Cancer Sci 2015

Bone marrow niche, Immune response and MDS

Ganan-Gomez et al Leukemia 2015 29,1458-1469

CHIP: PRECURSOR TO HEME NEOPLASMS

Clonal Hematopoiesis of Indetermined Potential

Steensma et al. Blood 2015 126(1):9-16

Spectrum of Hematopoietic Disorders

FEATURE	ICUS	IDUS	СНІР	CCUS	MDS		
Somatic mutation	I	-	+/-	+/-	+/-		
Clonal karyotypic abnormality	-	-	+/-	+/-	+/-		
Marrow dysplasia	-	+	-	-	+		
Cytopenia	+	-	-	+	+		

ICUS: Idiopathic Cytopenia of Unknown Significance IDUS: Idiopathic Dysplasia of Unknown Significance CHIP: Clonal Hematopoiesis of Indeterminat Potential CCUS: Clonal Cytopenia of Unknown Significance

NCCN MDS Version 2.2018

Genes involved in MDS

Steensma et al Mayo Clin Proc 2015 90(7):969-983

Diagnosis

Overlap Syndromes

University Press. doi:10.1017/CBO9781316017852.015

How do we make the diagnosis?

- Signs and symptoms are unspecific:
 - a. Fatigue (Anemia)
 - b. Infections (Neutropenia)
 - c. Bleeding (Thrombocytopenia)
- Laboratory studies showing isolated cytopenia/bycytopenia/pancytopenia.
- Gold standard: Bone marrow biopsy.

Diagnostic Evaluation

Needed for most patients	Needed for some patients					
Medical history and physical exam	Copper level					
CBC with differential	HIV					
LDH	HLA typing					
Reticulocyte counts	Flow cytometry					
Blood smear	FISH					
Serum EPO	Molecular testing					
Iron, ferritin, folate and vitamin B12	Check for congenital medical conditions					
Thyroid function						
Bone marrow biopsy and aspiration						
Cytogenetic testing						

Bone marrow examination

Diagnostic Confirmation

- Signs and symptoms
- Laboratory studies
- Pathology confirmation:

- Dysplasia in red cells/white cells and/or platelet precursors

- Blasts < 20%

- Clonality demonstrated in chromosomes, FISH or molecular studies.

MDS Case

- Mr. T had the following labs: WBC: 5000, Hb:8.
 Plts: 30,000
- Bone marrow biopsy: MDS, Cytogenetics: 5qblasts 3%

WHO 2016 MDS CLASSIFICATION

	Disease	Blood findings	Bone marrow findings				
	MDS with single lineage dysplasia (MDS-SLD)	Single cytopenia or bicytopenia. No blast	Unilineage dysplasia <5% blasts <15% ringed sideroblasts				
	MDS-SLD with ring sideroblasts	Anemia No blasts	Erythorid dysplasia only. >15% ringed sideroblasts <5% blasts				
(MDS with multilineage dysplasia MDS-MLD with ring sideroblasts	Cytopenias <5% blasts No Auer rods <1 x 10 9 monocytes	Unilineage or multilineage dysplasia				
√T 7-	MDS with isolated del 5q	Anemia No or rare blasts	Increased megakaryocytes with hypolobulated nuclei <5% blasts				
	MDS with excess blasts MDS-EB1 MDS-EB2	Cytopenias 1: <5% blasts 2: 5-19% blasts	1: 5-9% blasts 2: 10-19% blasts				
	MDS unclassifiable (MDS-U)	Cytopenias	Dysplasia in <10% of cells plus CG abnormality, <5% blasts				

What is the prognosis of MDS?

(including Mr. T)

The importance of MDS Scoring Systems

- Prediction of outcomes: Survival, acute leukemia transformation risk.
- Treatment decisions. (To treat or not to treat)
- Key factors:
 - MDS subtype
 - Percent of blast cells
 - Chromosome changes

		0		0.5		1		1.5		2 3		4	
	Cytogenetics	Very Good				Good			I	Intermediate	Poor	Ve	ery Poor
	Blasts (%)	<2%				>2-	<5%		ļ	5-10%	>10%		
	Hemoglobin	>10				8-10		<8					
	Platelets	>100,000		50- 100,00	0								
	ANC	>	0.8	<0.8									
			Cytogenetics Risk Grouping		g	Cytogenetic Types						Survival	
1			Very Good				Del 11q, -Y					5.4 y	
	PSS-R SCORING SYSTEM		Good			Norma	ormal, <mark>del 5q</mark> , del 12p, del 20, del 5					4.8	
			Intermediate			Del 7q,+8, +19, i17q, any other single or double independent clones					2.7		
			Poor			-7, inv(3), t3q, del 3q, double including -7/del 7q, complex: 3 abnormalities					,	1.5	
			Very Poor			Complex> 3 abnormalities					0.7		
			Score		<1. Ver Lov	ъ	>1.5-3 L	ow		-4.5 ermediate	>4.5-6 High		>6 Very High
			Survival		8.8		5.3 year	S	3		1.6		0.8
			Risk of AML i of patients	in 25%	NR		10.8 yea	irs	3.2	2	1.4		0.73

Survival according to IPSS-r category

AML evolution per IPSS-R category

TREATMENT

MDS Treatment Myths and Facts

- <u>"One size fits all</u>": Risk-oriented treatment
- "All you need is chemotherapy": Chemo is only one option among many
- <u>"I am too old to get treatment</u>": QOL and survival are treatment goals
- "Transplant is not an option": It is for some patients

Treatment Goals

Very low Low Risk MDS

Int-2 High Risk MDS

GOALS OF CARE

Improve quality of life Improve transfusion independence Improve marrow function **Cure!** Decrease risk of leukemic transformation Improve survival Improve quality of life Cure!

Low Risk MDS Treatment

Observation

This is my favorite one !

- Transfusions
- Iron chelation
- Hematopoietic growth factors
- Immunosuppresive therapy
- Immunomodulatory drugs (Lenalidomide)

Transfusion Independency: Key Goal on MDS

 Transfusion-dependent patients had worse OS than transfusion-independent patients (HR: 2.16; P < .001)

Malcovati L, et. al. J Clin Oncol. 2005;23:7594-7603.

Serum Ferritin is Predictive of Survival and Risk of AML in MDS

Iron overload is a prognostic factor for OS and transformation to AML

Sanz G, et al. 2008 ASH. Abstract 640.

Iron Chelation and Survival

Pooled Difference in Median Overall Survival

Survival is better in all cases!

Mainous III A, et al. BJH 2014 Dec;167(5):720-23

Hematopoietic Growth Factors

	Generic Names	Brand Names	Mechanism of Action	Responses
ESA	Epoetin alfa Darbopoietin	Epogen, Procrit Aranesp	Increase red cell counts	40% Epo levels below 500
GCSF	Filgrastim	Neupogen, Zarxio	Increase Neutrophil counts	38% OS: NR
1. Thrombopoietin*	Eltrombopag	Promacta	Increase platelets	47% *

* Not FDA approved yet

ESA and GSCF can be used in combination

1. Oliva EN et al. Lancet Haematol 2017 Mar 4(3):e127-e136

Lenalidomide

Steensma D et al. Blood 2011 118:481-82

MDS-002/003: Lenalidomide in MDS

- Phase II studies of lenalidomide efficacy and safety
- Shared eligibility requirements include: IPSS low/int-1 MDS; ≥ 2 U RBC/8 Wks; PLT > 50,000/µL; ANC > 500/µL
- Lenalidomide dosing: 10 mg/day QD or for 21 Days/28 Day cycle
- Response assessment after 24 Wks of treatment

*TI + minor: overall hematologic improvement, including TI and pts with \geq 50% reduction in transfusions.

1. Raza A, et al. Blood. 2008;111:86-93. 2. List A, et al. N Engl J Med. 2006;355:1456-1465.

Parameter	MDS-002 ^[1] Non-del(5q)	MDS-003 ^[2] del(5q)
Pts, N	214	148
Erythroid Response, % TI TI + minor*	26 43	67 76
Cytogenetic Response, % CCR CCR + PR	9 19	45 73
Median Hb increase, g/dL	3.2	5.4
Time to response, Wks	4.8	4.6
Median treatment duration, Wks	41	> 104

MDS-004: Lenalidomide in MDS With del(5q)

• Randomized, double-blind, placebo-controlled, phase III trial

Median duration: not reached; median follow-up: 1.55 yrs

Overall safety consistent with known lenalidomide safety profile

Fenaux P, et al. Blood. 2011;118:3765-3776.

In Summary

Observation: Isolated cytopenia, no symptoms.

- Low risk MDS with symptoms:
 - Consider growth factors
 - Transfusions/iron chelation
 - Lenalidomide in 5q MDS
 - Clinical Trial

Going back to Mr. T Case...

• He started treatment with lenalidomide.

• No need for transfusions or growth factors.

• Blood counts started to improve.

High Risk MDS Treatment (What comes first?)

 Hypomethylating Agents: Azacytidine, Decitabine.

• Intense chemotherapy.

• Clinical Trials.

• Stem cell transplant.

Assessment before treatment	Treatment options
Allogeneic HCT is a good option for you, and a well-matched donor is available	Allogeneic HCT Azacitidine or decitabine followed by HSCT High intensity chemo followed by HSCT
Allogeneic HCT may be a good option for	Azacitidine
you, but a well-matched donor is not	Decitabine
avaliable	Clinical trial
Allogeneic HCT is not a good option for	Azacitidine (preferred)
you, or a well-matched donor is not	Decitabine
available	Clinical trial

Hypomethylating Agents

Fenaux, et al. Lancet Oncology 2009;10223-232
 Kantarjian et al Cancer 2006, Vol 106, issue 8

HMA Mechanism of Action

Nat Rev Clin Onc 2010

Azacitidine/Decitabine

• Administer every 28 days

• At least 4 to 6 cycles

Side effects: Nausea/vomiting, decreased counts, infections

Allogeneic Stem Cell Transplant

© 2011 Terese Winslow LLC U.S. Govt. has certain rights

NCI 2017

Survival after HSCT by age

Myelodysplastic / Myeloproliferative Diseases Overall Survival

Bone Marrow and PBSC Transplantation for Adult Patients by Age at Transplant Unrelated Transplants Facilitated by NMDP/Be The Match

(2005-2014)

SOURCE: CIEMTR®, the research program of NMDP/Be The Match

HSCT Challenges

 Donor selection: Related/Unrelated/Alternative donors.

 Patient AND FAMILY selection: Fit for transplant/family support.

• Insurance coverage: This is a big deal!

• Risks versus benefits

CLINICAL TRIALS IN MDS: WHY ARE SO IMPORTANT?

CLINICAL TRIALS IN MDS

Patient always comes first

• The goal is research

Provides "evidence-based" patient care

• Improves quality of care

• Better than standard of care

MDS trials are available in Albuquerque

Trial	Title	Who can participate?	Status
ECOG-ACRIN NHLBI-MDS	A prospective, multi-center cohort supporting research studies in MDS natural history	MDS diagnosis within 6 months. Other cytopenias MDS/MPN	Open active
MEI-011	A safety and efficacy study of pracinostat and azacitidine in patients with high risk MDS	High risk MDS	Open active
SWOG 1612	Azacitidine With or Without Nivolumab or Midostaurin, or Decitabine and Cytarabine Alone in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia or High- Risk Myelodysplastic Syndrome	High risk MDS	In review
ORIEN	Oncology Research Information Exchange Network	Low and high risk MDS	Open active
INST 1512	INST 1512: A new drug discovery platform using High throughput Flow Cytometry and a PDX tissue repository in AML and MDS	MDS and AML	Open active

Conclusions

- Treatments for MDS are effective
- Risk stratification is important: Low vs. High
- Low risk treatments are different than high risk MDS treatments.
- Quality of life is always a goal.
- More clinical trials are needed to continue improving outcomes.

THANK YOU

UNM Comprehensive Cancer Center

MDS Foundation

Hematology Team UNM

George Atweh, MD Matthew Fero, MD Ian Rabinowitz, MD Dulcinea Quintana, D Elizabeth McGuire, MD Jan de Ia Garza, MSN Shari Fryer, PA Jessica Lewis, PA Cheryl Willman, MD

NEW MEXICO CANCER CARE ALLIANCE

Oliver Rixe

Teresa Stewart

Leslie Byatt

Kathy Anderson

April Encee

Ava Bernardini

Daniel Weishampel

To all patients and their caregivers