New and Emerging Therapies for Myelodysplastic Syndromes

Andrew M. Brunner, MD

Massachusetts General Hospital Cancer Center

July 21, 2018

Myelodysplastic Syndromes - MDS

- Bone marrow cancers characterized by dysplasia, clonality, and ineffective hematopoiesis
- Disease of older individuals
- Slightly more common among men than women
- Survival varies months to years depending on subtype

MDS treatment is based on disease risk

Risk Stratification by IPSS or IPSS-R Blood Counts, Blasts, and Karyotype

Risk of Serious or Life-threatening Complication related to MDS: *Infection Bleeding*

Risk of Progression to Acute Myeloid Leukemia

IPSS and IPSS-R Risk do not always match the risk of the WHO disease subtype

Updates in Estimating Disease Risk

- New understanding about mutations in MDS
- Competing risks in often older patients
- Changes in MDS risk over time

Recurrent Somatic Mutations

Mutations are common – and not all MDS!

Jaiswal S et al. N Engl J Med 2014; 371:2488-2498

Mutations add to diagnosis and prognosis (and treatment?)

Biology of secondary leukemia AM Brunner and TA Graubert. EHA Learning Center. Jun 17, 2018; 219205

Mutations in Healthy Persons and Heart Disease

Ebert and Libby. Ann Intern Med. 2018;169(2):116-117.

Competing Risks in MDS

Disease Risk: Fixed or Fluctuating?

Pfeilstöcker M, et al. Blood 2016 128:902-910

More Immediate Risk of Death Due to Disease or AML

Transplant Candidacy

Chemotherapy

Therapeutic Targets in MDS

Sallman et al. Clinical Lymphoma, Myeloma & Leukemia, 2017-10-01, Volume 17, Issue 10, Pages 613-620

TGF-B Ligand Traps and Erythropoiesis

Blank U and Karlsson S. Blood 2015 125:3542-3550

Luspatercept

- Activin receptor IIIB protein, TGFB family member ligand trap
- EPO >500 or intolerant of ESAs, no prior HMA

Immune Checkpoints in Cancer

Pardoll DM. Nature Reviews Cancer 2012;12, 252-264 Ribas A. N Engl J Med 2012;366:2517-2519.

DNMTI and Interferon Response

Chiappinelli et al. Cell 2015;162:974

PD-L1 in MDS

• PD-L1 is upregulated in MDS blasts after exposure to IFNy and TNFa

Kondo et al. Blood 2010 116:1124-1131

Apoptosis in MDS

- BCL2 is a regulator of apoptosis
- "priming" apoptosis may be attractive in treating MDS

Roberts AW et al. CCR. Volume 23, Issue 16, pp. 4527-4533

Possible Spliceosome Targets

Agrawal et al. Current Opinion in Genetics & Development Volume 48, February 2018, Pages 67-74

Targeting mutated IDH proteins

Cellular Metabolism Proteins: IDH1 and IDH2

http://targetedcancercare.massgeneral.org/My-Trial-Guide/Diseases/Leukemias/IDH2.aspx

Conclusions

- Our understanding of MDS has grown significantly
- This knowledge may help us to identify new targets for treatment
- A number of therapies are in development and have exciting potential
- New targets continue to be identified
- Questions? abrunner@partners.org