Myelodysplastic Syndromes:
Patient Forum

Michael Keng, MD
December 15, 2018

MDS: Overview

- Epidemiology and “Staging”
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease
- Clinical Trials and Future Directions
- Conclusions

MDS: Epidemiology and Staging

- A heterogeneous clonal hematopoietic
disorder derived from an abnormal
multipotent progenitor cell

- Characterized by a hyperproliferative
bone marrow, dysplasia of the cellular elements, and ineffective hematopoiesis

MDS is a Cancer!!!

Disclosures

- Agios – Advisory Board

MDS: Epidemiology and Staging

- Shared features:
 - Ineffective differentiation and low blood counts
 - Clonal expansion of abnormal cells
 - Risk of transformation to acute leukemia

- Afflicts 15,000 – 45,000 people annually

- Incidence rises with age (mean age 71)
MDS Staging: Epidemiology

Cross-sectional analysis of 4514 MDS patients in the U.S. in 2005-7

<table>
<thead>
<tr>
<th>Age (Median)</th>
<th>Newly diagnosed</th>
<th>71 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established</td>
<td>72-73 years</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex (Mean)</th>
<th>Male (Newly diagnosed)</th>
<th>55%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Established)</td>
<td>51-57%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of MDS (Median)</th>
<th>13-16 months</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MDS Status</th>
<th>Primary</th>
<th>88 - 93%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary</td>
<td>7 - 12%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Cause</th>
<th>Chemotherapy</th>
<th>55 - 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>6 - 21%</td>
<td></td>
</tr>
<tr>
<td>Chemical exposure</td>
<td>2 - 9%</td>
<td></td>
</tr>
</tbody>
</table>

Sekeres et al. J National Cancer Inst 2008;100:1542

MDS Staging: Epidemiology

Median age ~71 years; increased risk with aging

Peaks 5-7 years following exposure

Peaks 1-3 years following exposure

Sekeres et al. J National Cancer Inst 2008;100:1542

MDS Staging: Epidemiology

MDS Staging: Epidemiology

Environmental

Inborn

AGING

- Exposure to DNA alkylating agents (chlorambucil, melphalan, cyclophosphamide)
- Exposure to topoisomerase II inhibitors (etoposide, anthracyclines)
- Exposure to ionizing radiation
- Environmental / occupational exposures (hydrocarbons etc.)

Antecedent acquired hematological disorders

- Aplastic anemia (15-20%)
- PNH (5-25%)

Fanconi anemia

Familial Platelet Disorder with AML (Fanconi-Anemia, "FPD-AML") (RUNX1, CEBA)

Topoisomerase II inhibitors

Medullary carcinoma

Myelodysplastic Syndromes (MDS)

Myeloproliferative Neoplasms

T-GL

For MDS diagnosis, you will need:

- Bone Marrow Aspirate/Biopsy
- Complete Blood Count with white cell differential
- Karyotype (chromosome analysis)

Additionally:

- MDS FISH panel and Flow cytometry
- Genetic Testing

Slide by Dr. David Steensma
Cytopenia(s):

- Hb < 11 g/dL, or
- ANC < 1.5 X 10^9/L, or
- Platelets < 100 X 10^9/L

MDS “Decisive” criteria:

- > 10% dysplastic cells in 1 or more lineages, or
- 5-19% blasts, or
- Abnormal karyotype typical for MDS, or
- Evidence of clonality (by FISH or another test)

Other causes of cytopenia and morphological changes EXCLUDED:

- Vitamin B12/folate deficiency
- HIV or other viral infection
- Copper deficiency
- Alcohol abuse
- Medications (esp. methotrexate, azathioprine, recent chemotherapy)
- Autoimmune conditions (ITP, Felty syndrome, SLE etc.)
- Congenital syndromes (Fanconi anemia etc.)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN etc.)

MDS Staging:

Diagnosis

- **Milestone Characteristics & Treatment**

MDS Staging: IPSS

Calculation of Prognostic Score

<table>
<thead>
<tr>
<th>Score</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM Blast %</td>
<td>< 5</td>
<td>5-10</td>
<td>11-20</td>
<td>21-29</td>
<td></td>
</tr>
<tr>
<td>Cyto genetics</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytopenias</td>
<td>0/1</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimation of Prognosis

<table>
<thead>
<tr>
<th>Overall Score</th>
<th>IPSS Subgroup</th>
<th>Median Survival (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Intermediate-1</td>
<td>3.3</td>
</tr>
<tr>
<td>Intermediate-2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>> 2.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Cytopenias:

- ANC < 1.5 X 10^9/L
- HGB < 10.0
- PLT < 100,000

Good Risk:

- [Ydel/iso, del(20q), Nl];

Intermediate Risk:

- [8+, other];

Poor Risk:

- [Chr. 7 abn, > 3 abn]

MDS: Epidemiology and Staging

- IPSS Refinement - IPSS-R

- Gene mutations

- WHO Revision

- WHO FDA Approval

- FAB

- IWG Criteria

- Prognostic Score

- Reclassification - Gene mutations

- 2016 - Revised (FAB)

MDS: Epidemiology and Staging

- NCCN Guidelines Version 2.2019
- Myelodysplastic Syndromes

Calculation of Prognostic Score

<table>
<thead>
<tr>
<th>Score</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM Blast %</td>
<td>< 5</td>
<td>5-10</td>
<td>11-20</td>
<td>21-29</td>
<td></td>
</tr>
<tr>
<td>Cyto genetics</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytopenias</td>
<td>0/1</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimation of Prognosis

<table>
<thead>
<tr>
<th>Overall Score</th>
<th>IPSS Subgroup</th>
<th>Median Survival (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Intermediate-1</td>
<td>3.3</td>
</tr>
<tr>
<td>Intermediate-2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>> 2.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Cytopenias:

- ANC < 1.5 X 10^9/L
- HGB < 10.0
- PLT < 100,000

Good Risk:

- [Ydel/iso, del(20q), Nl];

Intermediate Risk:

- [8+, other];

Poor Risk:

- [Chr. 7 abn, > 3 abn]

MDS Staging: IPSS-R Prognostic Score

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>V. Good</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>V. Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM Blast %</td>
<td>≤2</td>
<td>>2-5%</td>
<td>5-10%</td>
<td>>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≥10</td>
<td>8-10</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>≥100</td>
<td>50-100</td>
<td>50</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC</td>
<td>≥0.8</td>
<td>≤0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPSS-R Prognostic Risk Categories/Scores

<table>
<thead>
<tr>
<th>RISK GROUP</th>
<th>Risk Score</th>
<th>Median Survival (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>≤1.5</td>
<td>8.8</td>
</tr>
<tr>
<td>Low</td>
<td>>1.5-3.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Intermediate</td>
<td>>3.0-4.5</td>
<td>3.0</td>
</tr>
<tr>
<td>High</td>
<td>>4.5-6.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Very High</td>
<td>>6.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

MDS Prognosis Made Easy!!!

- **Lower Risk**
 - RA, RARS
 - RCMD, RCUD
 - MDS-U, MDS del (5q)
 - IPSS Low, Int-1 (0-1.0); IPSS-R V. Low, Low

- **Higher Risk**
 - RAEB (-1, -2)
 - IPSS Int-2, High (≥ 1.5); IPSS-R High, V. High

MDS Staging: Prognosis

Asymptomatic

- Bone Marrow Function
- Observation
- Epo/G-CSF
- Lenalidomide
- Azacitidine
- Decitabine
- Investigational
- 5q-
- Azacitidine
- Decitabine
- Investigational

- Intensive Chemotherapy
- RIC SCT - Full Ablative

Symptomatic

- Transfusion
- Symptomatic

MDS: Overview

- Epidemiology and “Staging”
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease
- Clinical Trials and Future Directions
- Conclusions

MDS: Lower-Risk Treatment Algorithm

Sekeres and Gerds Hematology 2014.

MDS: Lower-Risk Treatment Algorithm

Sekeres and Gerds Hematology 2014.
MDS: Lower-Risk Treatment Algorithm

Anemia
- Packed red blood cells
 - Adverse effects due to immune mechanisms
 - Iron overload
 - Volume overload

Neutropenia
- Granulocyte transfusion
 - Laborious, short-lived effect
 - Not widely available
 - Clinical utility unproven

Thrombocytopenia
- Platelet transfusion
 - Transfusion reactions, HLA sensitization

MDS: Lower-Risk ESA Response Rate

Patient diagnosed with lower-risk MDS per IPSS (FAB, 1985-2005)

- **Good response (74%, n=34)**
 - s-epo <100
 - U/L $100-500$
 - >500
 - Transf <3 units/m
 - U RBC/m $= or >2$ units/m

- **Intermediate response (23%, n=31)**

- **Poor response (7%, n=29)**

RA, RARS, RAEB

Score > +1
- **Score -1 to +1**
- **Score < -1**

MDS: Lower-Risk ESA Patient Selection

Blood Transfusion Reactions, HLA Sensitization

Iron Overload

Volume Overload

Transfusion Therapy

Platelet Transfusion

Red Cell Growth Factors

ESAs

Epoetin alfa (Procrit™)

Darbepoetin alfa (Aranesp™)

Filgrastim, G-CSF (Neupogen™)

Pegfilgrastim (Neulasta™)

Romiplostim (NPLate™)

Eltrombopag (Promacta™)

Transfusion Reactions

Laborious, short-lived effect

Not widely available

Clinical utility unproven

Adverse effects due to immune mechanisms

Medicare only pays for these if Hb <10 g/dL

Safety concerns in solid tumors, not yet in MDS

White cell growth factors

No survival benefit but may help decrease infx.

Sometimes combined with red cell factors

Platelet growth factors

New; risks still being defined in MDS. Reports of increased blasts in a few patients

Only FDA-approved for immune thrombocytopenia and AA

ESAs RR ~40%

Golshayan et al. Br J Haem 2007;137:125.

MDS: Lower-Risk ESA Response Rate

N = 1587 (1985-2005)

Growth factors

EPO

EPO + G-CSF

GM-CSF

G-CSF

ESAs Response Rate

Duration of response (median months, range)

Response rate CR/PR HL-E HI/SF

RA, RARS, RAEB

Score > +1
- **Score -1 to +1**
- **Score < -1**

Overall Survival by Treatment

MDS ≤ RAEB-1, Hgb < 9.5, plt >30,000. Fe RR 34% for ESA vs. 8.8% SC p=0.001

Crossover allowed after 4 months

No difference in Leukemic transformation

Responders lived longer than non-responders

MDS: Lower-Risk Treatment Algorithm

Sekeres and Gerds Hematology 2014

MDS: Lower-Risk Lenalidomide

MDS: Lower-Risk Lenalidomide in del(5q)

MDS: Lower-Risk Lenalidomide in Non-del(5q)

MDS: Lower-Risk Lenalidomide in Non-del(5q)

MDS: Lower-Risk
Lenalidomide in Non-del(5q)

MDS-002/003: Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>Grade ≥ 3 Adverse Events, %</th>
<th>Non-del(5q)</th>
<th>del(5q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Rash</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Grade ≥ 3 Adverse Events, %

- Thrombocytopenia
- Neutropenia
- Rash
- Diarrhea
- Fatigue

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk
Lenalidomide Summary

- MDS-004/005 confirmed results of MDS-003/002
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (42% vs 17%)
- No significant differences in hematological toxicity
- The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)

MDS: Lower-Risk

TPO Agonists

Hi-P: Development Cohort

<table>
<thead>
<tr>
<th>Baseline TPO:</th>
<th>Score +3 (N = 69)</th>
</tr>
</thead>
<tbody>
<tr>
<td><500 pg/ml</td>
<td>30.7%</td>
</tr>
<tr>
<td>500-2000 pg/ml</td>
<td>29.6%</td>
</tr>
<tr>
<td>>2000 pg/ml</td>
<td>17.4%</td>
</tr>
</tbody>
</table>

Prior platelet transfusion:
- <6 units: 17.4%
- 6-10 units: 44.9%
- >10 units: 17.4%

MDS: Lower-Risk

Treatment Algorithm

Patient diagnosed with lower-risk MDS per IWG criteria (median age >60 years or lower)

- No significant need for transfusion of ESA/RBC
- No infections requiring hospitalization

Start with TPO agonists

- Start therapy at baseline
- No response or low response

Start with hydroxyurea

- Start in patients with lower-risk MDS
- No response, poor response, or adverse effect

Start with lenalidomide

- Start in patients with lower-risk MDS
- No response, poor response, or adverse effect

Sekeres and Gerds Hematology 2014.

MDS: Lower-Risk

ATG

** IWG RR = 31%**

Median Duration = 16.4 Months

Passweg et al. JCO 2011;29:303.

MDS: Lower-Risk

DAC

Randomized Phase 2 Study in Low/Int-risk MDS (n=65)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Schedule A (n=43)</th>
<th>Schedule B (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>Overall improvement rate</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Complete response</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MAR response</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Partial response</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hematologic improvement</td>
<td>3</td>
</tr>
</tbody>
</table>

Garcia-Manero et al. JCO 2013;31:2548

MDS: Lower-Risk

HMA

Lower-risk MDS Patients Treated with HMA (N=290/438)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median TFS</th>
<th>Median OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 months</td>
<td>17 months</td>
</tr>
</tbody>
</table>

Jabbour et al. for MDS CRC Cancer 2014.

- Age is the strongest variable for IST response
- Pathogenetic difference in MDS of younger adults
- Responses are durable and may modify adverse effect of RBC-TI on OS
- Karyotype may influence IST response and disease biology
 - Low frequency of IST response in del(5q)
 - High response rate in trisomy 8
- NIH 8/17 (47%)
- WT1 amplification with specific cellular response
- Autoimmune hematopoietic suppression may select for +8 expansion
MDS: Lower Risk

HMA

Study Design

- Open-label phase II study
- Randomized by Simon's adaptive design; patients more likely to be assigned to treatment arm
- Median follow-up: 20 mos
- Primary endpoints: ORR defined as CR, PR, marrow CR, or hematologic improvement
- Response assessed by modified IWG 2006 criteria
- Secondary endpoints: safety, cytogenetic response, transfusion independence, EFS, OS

Safety

<table>
<thead>
<tr>
<th>Nonhematologic AEs, n (%)</th>
<th>Decitabine (n = 73)</th>
<th>Azacitidine (n = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>11 (15)</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>6 (8)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 (4)</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Infections/Infectious fevers</td>
<td>5 (7)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2 (3)</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

All grade 1/2 except where indicated. Grade 3 or 4 if G1.

- Both HMAs well tolerated; no grade 4 AEs
- Cycle delays: 38% in decitabine arm, 20% in azacitidine arm
- Dose reductions: 12% in decitabine arm, 5% in azacitidine arm

Conclusions

- Both low-dose HMAs showed activity, were well tolerated in adult pts with LR MDS and no prior HMA use
 - ORR: 60%
 - 1-yr EFS: 65%
 - 1-yr OS: 85%
- Significantly higher ORR (70% vs 49%; *P = .03*) reported with decitabine vs azacitidine; particularly among pts with ≥ 5% blasts (100% vs 36%; *P < .001*)
- Open-label, randomized phase II trial now ongoing to compare low-dose decitabine, low-dose azacitidine, azacitidine x 5 days, and best supportive care in a LR MDS pt population

Other - Transfusions

- Transfusion-dependent patients had a significantly shorter OS than transfusion-independent patients (HR: 2.16; *P < .001* overall)

Development of transfusional iron overload is a significant independent prognostic factor for overall survival and evolution to AML.

MDS: Lower-Risk
Other – Ferritin

OS
Probablility

Time Without AML
Probablility

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

Ferritin < 1000 µg/L
Ferritin ≥ 1000 µg/L

P < .0001

P < .0001

MDS: Lower-Risk
Other – Chelation

Characteristic
NCCN
MDS Foundation

Transfusion status
• Received > 20 RBC transfusions
• Continuing transfusions
• Transfusion dependent, requiring 2 units/mo for > 1 yr

Serum ferritin level
• > 2500 µg/L
• 1000 µg/L

MDS risk
• IPSS: Low or intermediate-1 risk
• IPSS: Low or Int-1 WHO: RA, RARS and 5q-

Patient profile
• Candidates for allografts
• Life expectancy > 1 yr and no comorbidities that limit progress
• Need to preserve organ function
• Candidates for allografts

Median OS From Diagnosis, Mos
Nonchelated: 48.7
Chelated (n = 263): 96.8
Chelated ≥ 6 mos (n = 191): 102.5

Proportion Surviving

MDS: Lower-Risk
Other – Ferritin

Pr<.0001 for chelated vs nonchelated

MDS: Lower-Risk
Summary Anemia

• Assess potential causes of anemia
• Supplement with iron, folate, vitamin B as needed
• RBC transfusion support for symptomatic patients

EPO ≤ 500 mU/mL
≥ 2 U RBC/mo

EPO > 500 mU/mL;
≥ 2 U RBC/mo

< 2 U RBC/mo

≤ 60 yrs old, lymphocytic, RA, RAEB, RARS

Leukemia

ESA ± G-CSF

Lenalidomide

AZA/DAC

Clinical Trial

AZA/DAC

Clinical Trial

IST

Clinical Trial

Adapted from NCCN. Clinical practice guidelines in oncology. MDS. v2.2017.

MDS: Overview

• Epidemiology and “Staging”
• Treatment of Lower-risk Disease
• Treatment of Higher-risk Disease
• Clinical Trials and Future Directions
• Conclusions

MDS: Higher-Risk Treatment Algorithm

MDS: Higher-Risk AZA

MDS: Higher-Risk AZA

Drug Combinations?
MDS: Overview

- Epidemiology and “Staging”
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease
- Clinical Trials and Future Directions
- Conclusions

MDS: Clinical Trials and Future Direction

We have to do BETTER.

MDS: Clinical Trials and Future Direction HRMDS

Median OS 5.6 months at HMA failure for HR MDS

<table>
<thead>
<tr>
<th>Time Since Azacitidine Failure (days)</th>
<th>Median follow-up: 15 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>720</td>
<td>75</td>
</tr>
<tr>
<td>1,080</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Since Azacitidine Failure (days)</th>
<th>Median follow-up: 15 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>720</td>
<td>75</td>
</tr>
<tr>
<td>1,080</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease Status</th>
<th>N=455</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapsed refr.</td>
<td>239</td>
<td>52</td>
<td>11</td>
</tr>
<tr>
<td>Stable disease</td>
<td>91</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>136</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Secondary failure</td>
<td>104</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>Failure after DH</td>
<td>32</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Failure after RH</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Failure after AHD</td>
<td>128</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>CRD intolerance</td>
<td>42</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Without ongoing response</td>
<td>29</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Durin response to AZA</td>
<td>13</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Since Azacitidine Failure (days)</th>
<th>Median follow-up: 15 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>720</td>
<td>75</td>
</tr>
<tr>
<td>1,080</td>
<td>100</td>
</tr>
</tbody>
</table>

MDS: Clinical Trials and Future Direction HRMDS

<table>
<thead>
<tr>
<th>Type of salvage</th>
<th>N</th>
<th>ORR</th>
<th>Median OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrelated</td>
<td>32</td>
<td>16A</td>
<td>4.1</td>
</tr>
<tr>
<td>Best supportive care</td>
<td>32</td>
<td>16A</td>
<td>7.3</td>
</tr>
<tr>
<td>Low-dose chemotherapy</td>
<td>36</td>
<td>322</td>
<td>8.9</td>
</tr>
<tr>
<td>Intensive therapy</td>
<td>34</td>
<td>406</td>
<td>13.2*</td>
</tr>
<tr>
<td>Investigational therapy</td>
<td>37</td>
<td>1319</td>
<td>19.5*</td>
</tr>
</tbody>
</table>

P<0.001

MDS: Clinical Trials and Future Direction

Immunotherapy

- Early results with short follow-up (median 3 cycles) suggest nivolumab and ipilimumab well tolerated as single agent or with azacitidine
- Nearly 30% ORR with ipilimumab in pts who failed HMA therapy shows promising single-agent activity as salvage therapy
- Nivolumab did not show single-agent activity as salvage therapy
- Encouraging early 65% ORR when combined with azacitidine in previously untreated pts
- Additional treatment cohorts ongoing
- Investigators suggest that future randomized trials are warranted

ETCTN Trial 10026 - Ipilimumab and Decitabine
- Relapsed MDS patients with 5% blasts or greater
 After allogeneic stem cell transplant
 OR
 After 4 cycles of hypomethylating agent

MDS: Clinical Trials and Future Direction

SGI-110
Second-generation hypomethylating agent
- SC dinucleotide of decitabine and deoxyguanosine
- longer half-life; more extended decitabine exposure

15 pts with higher-risk MDS
- Median age 74; all had previous aza/decitabine
- 5 responders (33%), duration 28-224 days

O’Connell C et al, EHA 2013, abstract P189

SGI-110 in MDS/CMML/AML after AZA failure
- GDAC 60 mg/m²/day Day 1-5 q 28 days
 - Median 3 cycles
- N=56; 15 refractory and 41 relapsed
- 9 responded (16%)
 - 1 CR, 2CRp, 5 marrow CR, 1 HI
- Median duration of response 9 months
- Median OS 6.7 mos
 - 33 died: 14 progression, 13 infection, 1 bleeding, 5 other

Phase III ONTIME: Rigosertib: PLK and PI3K inhibitor; a novel synthetic benzyl styryl sulfone that is cytotoxic against a variety of human tumor cell lines
- Patients with higher-risk MDS (RAEB/RAEB1, CMML, relapsed/refractory after aspirin/azacytidine) (planned N = 270)
- Continue treatment q4w until progression

Rigosertib (ON 01910.Na) + BSC
1800 mg/d x 3 days q2w (n = 180)
Best Supportive Care
LoDAC, hydroa, GFs (n = 90)

Stratified by blast % (5% to 19% vs 20% to 30%)

• Primary endpoint: OS (HR: 0.62)
• Secondary endpoints: IWG response, transformation to AML, infection, bleeding, QoL

Garcia-Manero et al. Lancet Oncology 2016;17:496-508

Garcia-Manero et al Lancet Oncology 2016;17:496-508
INSPIRE - Rigosertib

MDS: Clinical Trials and Future Direction

INSPIRE - Rigosertib

A Phase III, International, Randomized, Controlled Study of Rigosertib versus Physician’s Choice of Treatment in Patients with Myelodysplastic Syndrome after Failure of a Hypomethylating Agent

- Eligibility:
 - MDS subtypes RAEB-1, RAEB-2, or RAEB-t
 - Progression or failure to respond to HMA
 - HMA treatment duration, ≥5 months
 - < 82 years of age

- **Randomization**
 - Rigosertib + best supportive care
 - Physician’s Choice of Treatment + best supportive care
 - N = 350

- **Primary Endpoints:**
 - Overall Survival

New Hypomethylating Agents

- guadecitabine (SGI-110, oral)
- CC486 (oral form of azacitidine)
- cedazuridine (ASTX727, orally fixed-dose combination of decitabine and a cytidine deaminase inhibitor)

Imetelstat (telomerase inhibitor)

- studied in myeloproliferative neoplasms and transfusion independence rates were ~30%

Other Targets

- IDH 1 and 2 – Ivosidenib and Enasidenib
- HIF – Roxadustat
- Need targets for TP53
 - Decitabine – 10 day regimen
 - APR-246, a TP53 modulator

MEDALIST Trial

Background and Rationale

- Patients with lower-risk (LR) transfusion-dependent MDS have a poorer prognosis, with greater risk of progression to AML and inferior overall survival compared with patients with transfusion-independent MDS
- RBC transfusion-dependent LR, non-del(5q) MDS patients have a transient response to ESA's, with an attendant risk of iron overload and secondary organ complications
- Few treatment options exist for the large number of patients with LR MDS who are either refractory to or become unresponsive to ESA's

MEDALIST Trial

Luspatercept

- Luspatercept is a first-in-class erythroid maturation agent that neutralizes select TGF-β superfamily ligands to inhibit aberrant Smad2/3 signaling and enhance late-stage erythroprogenitor in MDS models
- In a phase 2 study in LR, non-del(5q) MDS, luspatercept yielded a high frequency of transfusion reduction or RBC transfusion independence in patients with MDS-RS vs other subtypes
MEDALIST Trial Study Design – A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study

Patient Population
- MDS 6 (2016): ≥ 15% to ≤ 30% or ≥ 30% to ≤ 35% blasts
- NHL: ≤ 35% blasts
- Previous MDS therapy
- Prior SCT response: no response or partial response

Randomise 2:1

Inclusion Criteria
- Age ≥ 18 years
- Eastern Cooperative Oncology Group (ECOG) performance status ≤ 2
- Karnofsky performance status ≥ 60
- Platelet count ≥ 20 x 10^9/L
- Absolute neutrophil count ≥ 1.5 x 10^9/L

Exclusion Criteria
- Symptomatic hepatic or splenic vein thrombosis
- Active infection
- Active inflammatory disease
- History of CNS disease

Lupiflucopert 1.8 mg/kg (I.v.) every 21 days
- Placebo (0.2 ml) every 21 days

Gloves & Gowns Assessment (week 26 & every 6 months)
- Treatment discontinued if lack of clinical benefit or drug progression per RECIST criteria

Secondary Endpoints
- Response rate
- Duration of response
- Hb response
- Hb change from baseline

Additional secondary endpoints:
- Hb-E (HBC 2006 criteria) for any consecutive 56-day period
- Reduction in red blood cell transfusion burden ≥ 50% in 36 weeks or
- Mean Hb increase of ≥ 1.5 g/dL in 36 weeks

List A, et al. ASH 2018. Abstract 001.

MEDALIST Trial Demographics and Baseline Disease Characteristics

Table:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Lupiflucopert</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>66 (21-81)</td>
<td>68 (25-78)</td>
</tr>
<tr>
<td>MDS, at diagnosis</td>
<td>66 (21-81)</td>
<td>68 (25-78)</td>
</tr>
<tr>
<td>Time since diagnosis, median (range), months</td>
<td>13 (1-52)</td>
<td>13 (1-52)</td>
</tr>
<tr>
<td>Females, n (%)</td>
<td>20 (38)</td>
<td>22 (38)</td>
</tr>
<tr>
<td>Prior SCT response, n (%)</td>
<td>15 (28)</td>
<td>15 (28)</td>
</tr>
<tr>
<td>Prior SCT response, median (range), weeks</td>
<td>2 (0-104)</td>
<td>2 (0-104)</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Lupiflucopert</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>66 (21-81)</td>
<td>68 (25-78)</td>
</tr>
<tr>
<td>MDS, at diagnosis</td>
<td>66 (21-81)</td>
<td>68 (25-78)</td>
</tr>
<tr>
<td>Time since diagnosis, median (range), months</td>
<td>13 (1-52)</td>
<td>13 (1-52)</td>
</tr>
<tr>
<td>Females, n (%)</td>
<td>20 (38)</td>
<td>22 (38)</td>
</tr>
<tr>
<td>Prior SCT response, n (%)</td>
<td>15 (28)</td>
<td>15 (28)</td>
</tr>
<tr>
<td>Prior SCT response, median (range), weeks</td>
<td>2 (0-104)</td>
<td>2 (0-104)</td>
</tr>
</tbody>
</table>

List A, et al. ASH 2018. Abstract 001.

MEDALIST Trial Primary Endpoint: Red Blood Cell Transfusion Independence ≥ 8 Weeks

Table:

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Lupiflucopert (n = 153)</th>
<th>Placebo (n = 76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC-TI ≥ 8 weeks</td>
<td>58 (37.9)</td>
<td>10 (13.2)</td>
</tr>
<tr>
<td>95% CI</td>
<td>30.2–46.1</td>
<td>6.5–22.9</td>
</tr>
</tbody>
</table>

List A, et al. ASH 2018. Abstract 001.

MEDALIST Trial Duration of RBC-TI Response in Primary Endpoint Responders

Graph:

MDS: Clinical Trials and Future Direction

MEDALIST Trial
Secondary Endpoint: Erythroid Response (Hb-E)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Luspatercept</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieved ≥ 2 g/dL (n = 130)</td>
<td>57 (44.3)</td>
<td>36 (28.2)</td>
</tr>
<tr>
<td>Reduction of ≥ 1 g/dL (wks)</td>
<td>37 (28.2)</td>
<td>17 (13.1)</td>
</tr>
<tr>
<td>Hb increase of ≥ 1 g/dL (wks)</td>
<td>5 (3.8)</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>MDS (C)</td>
<td>4.12 (2.05)</td>
<td>5.56 (3.29)</td>
</tr>
<tr>
<td>ΔHb (g/dL)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>

MEDALIST Trial
Change in Hemoglobin Concentration

- Median peak hemoglobin increase in luspatercept responders: 2.95 g/dL (1.4-5.4 g/dL)

MDS: Clinical Trials and Future Direction

MEDALIST Trial
Safety Summary

<table>
<thead>
<tr>
<th>Drug</th>
<th>Luspatercept (n = 130)</th>
<th>Placebo (n = 130)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥ 1 TEAEs, n(%)</td>
<td>130 (98.5)</td>
<td>78 (59.2)</td>
</tr>
<tr>
<td>Patients with ≥ 2 serious TEAEs</td>
<td>130 (100.0)</td>
<td>35 (26.9)</td>
</tr>
<tr>
<td>Patients with Grade 3 or 4 TEAEs</td>
<td>5 (4.7)</td>
<td>5 (3.8)</td>
</tr>
<tr>
<td>Patients with TEAEs leading to death</td>
<td>5 (3.8)</td>
<td>4 (3.1)</td>
</tr>
<tr>
<td>Patients with a ≥ 7% change in Hb, n (%)</td>
<td>130 (100.0)</td>
<td>78 (59.2)</td>
</tr>
</tbody>
</table>

* Progression to ANLL occurred in 4 patients (3.1%) in the luspatercept arm and 2 patients (1.5%) in the placebo arm.

MDS: Clinical Trials and Future Direction

Overall proportion of recently diagnosed patients (n = 670) and range of established patients across six surveys (n = 3844) taking specific types of therapeutics at the time of the survey

ESA (darbepoeitin and/or arthropoeitin)	58%	55-61%
Azacitidine (Vidaza)	16%	12-13%
G-CSF, GM-CSF or pegfilgrastim	8%	6-13%
Lenalidomide (Revlimid)	8%	6-13%
Decitabine (Decadron)	2%	0-4%
Thalidomide	1%	0.5-2%

Only 4% of recently dx or established patients were considered for transplant
Only 1% of recently dx or established patients were enrolled into clinical trials
Established patients (range across 6 surveys)

MDS: Clinical Trials and Future Direction

MEDALIST Trial
Changes in the IPSS-R

- Increasing IPSS score (A)
- Low IPSS-R risk patients (B)
- Intermediate IPSS-R risk patients (C)

Gene Mutations with Prognostic Relevance
Favorable: SF3B1
Unfavorable: RUNX1, ASXL1, EZH2, TET2, TET6, DNMT3A, U2AF1, NRAS

Reja P. Haematologica 2014; 99: 956.
MDS: Clinical Trials and Future Direction

- Epidemiology and “Staging”
- Treatment of Lower-risk Disease
- Treatment of Higher-risk Disease
- Clinical Trials and Future Directions
- Conclusions

MDS: Overview

- MDS is the most common myeloid malignancy, with survival curves that rival those of lung cancer.
- Therapy for lower-risk disease addresses specific cytopenias, and in some cases karyotypic abnormalities.
- Therapy for higher-risk disease should be started immediately, and can prolong survival.
- The next regulatory frontier is in the relapsed/refractory setting for lower- and higher-risk disease

MDS: Conclusions

- Thanks!
- University of Virginia Leukemia/MDS Program
- And Our Patients & Families!!!