Understanding &Treating Myelodysplastic Syndrome (MDS)

Casey O’Connell, MD
Associate Professor of Clinical Medicine
Jane Anne Nohl Division of Hematology
Keck School of Medicine of USC
Let’s Look at Our Blood...
Bone Marrow: The Blood Cell Factory

100,000,000,000 Platelets/day

200,000,000,000 RBCs/day

10,000,000,000 WBCs/day
Blood: 3 Major Cell Types

RED CELLS: Carry oxygen to all the organs

PLATELETS: Help heal cuts or nicks on SKIN, MUCOSA (gums, nose, gut)

WHITE BLOOD CELLS: fight infection, help with healing
ADDITIONAL RESOURCES

• www.keckmedicine.org/rare-blood-diseases
 – Video “How to Read Your CBC”
CBC in MDS: What To Focus On

- **WBC**: Rising WBC, especially with “BLASTS” could indicate transition to more aggressive MDS or AML (NEED THE DIFFERENTIAL)
- **WBC**: Low WBC, especially ANC below 1000 can increase risk of infection, may be result of treatment and can “recover” (NEED THE DIFFERENTIAL)
- **HGB/HCT**: below 10/30 can cause symptoms, below 7-8/21-24 may require transfusion in symptomatic patients
- **Platelets** between 20,000-100,000 (20-100) generally no intervention offered but be careful of trauma as bleeding risk increases at lower levels
How Does a Factory Making 310,000,000,000 cells Daily Function for 80+ Years????

1. **Needs Ingredients**: proteins, iron, oxygen, B12, Folate, copper, etc.

2. **Needs Stimulus**:
 - Erythropoietin – from the kidneys stimulates Red Cell Production
 - GCSF – from blood vessel lining, immune cells stimulates WBC Production
 - Thrombopoietin – from the liver stimulates Platelet Production

3. **Needs Source**:
 - STEM CELLS
What is a stem cell?

A single cell that can replicate itself, or...

differentiate into many cell types.
What Is MDS?

• MYELO = Greek myelos = marrow

• DYSPLASIA= dys (ABNORMAL) + plasia (GROWTH or DEVELOPMENT)
What Is MDS?

- Ineffective production of blood cells by the bone marrow resulting in anemia +/-thrombocytopenia, +/- leukopenia
- Clonal hematopoietic stem cell disorder can evolve to AML
- Rule out vitamin deficiencies, liver disease, other heme malignancies, splenomegaly
- Heterogeneous group of disorders NOT A SINGLE DISEASE!
Normal stem cell

Aberrant epigenetic programs

Normal, trilineage differentiation

MDS stem cells

Aberrant growth signals & reduced apoptosis

Trilineage dysplasia, compensatory stem cell expansion and increased apoptosis

AML

Inhibited differentiation and uncontrolled blast cell proliferation
What Is MDS?

Defective HSCs lead to defective blood cell production

- Decreased/Defective ("Ineffective") Red Cell Production = ANEMIA
 - Fatigue, shortness of breath, weakness, fainting heart attack, stroke

- Decreased/Defective Platelet Production = Thrombocytopenia
 - Bruising, gum bleeding, nose bleeding, red dots on skin (petechiae)

- Decreased/Defective White Blood Cell Production = Neutropenia
 - Infections, fatigue, poor wound healing
Dysplasia – easiest to see in the neutrophils
What Causes MDS?

• Acquired DNA damage…
 – Chemotherapy
 – Benzene/chemicals
 – Radiation
 – ?Immune Dysregulation?
 – MAJORITY: IDIOPATHIC

• People are living longer after chemo….
MDS: NO LONGER ONE DISEASE

• CMML (chronic myelomonocytic leukemia) – excess production of monocytes + dysplasia + cytopenias
 – Also can evolve to AML
 – Now considered an MDS/MPN OVERLAP syndrome

• CCUS/ICUS/Early MDS
Myeloproliferative Neoplasms: Myelofibrosis

- Stem cell defect characterized by anemia, splenomegaly, systemic symptoms
 - Can be primary
 - Can be transformed from ET/PV
- Jak-2 mutation present in 30-50%
 - Jak-2 inhibitors control symptoms
 - Only CURE is stem cell transplant
- CALR mutation present in 88% of JAK2 negative patients (NEJM, Dec 2013)
- Additional “driver” mutations similar to MDS/AML
The features of HSCs in the context of aging and MDS are shown.

- Young HSC
 - +/- CHIP Associated Mutations
 - Unresolved Questions:
 - Contribution of clonal selection vs. uniform changes to aging phenotypes?
 - Modifiable cell-extrinsic factors?

- Aged HSC
 - Additional Mutations
 - Unresolved Questions:
 - Minimal complement of mutations for MDS?
 - Is MDS an inevitable outcome of prolonged HSC aging?

- MDS HSC

Mature Hematopoietic Cells
- Myeloid Cells
- Lymphoid Cells

Phenotypic Features/Changes
- Normal Hematopoiesis
 - Preserved HSC Reconstitution Potential
 - Balanced Myeloid/Lymphoid Output
- Aging Hematopoiesis
 - Normal Peripheral Blood Counts
- Ineffective Hematopoiesis
 - Decreased HSC Reconstitution Potential
 - Myeloid Biased Differentiation
 - Decreased RBC Production
 - Clonal Expansion
 - Risk of Acute Leukemia
 - Clinically Relevant Cytopenias

© 2017 by The American Society of Hematology
Fig. 6. Incidence of patients with myelodysplastic syndrome by sex and age in the United States (Surveillance, Epidemiology, and End Results data, based on the November 2017 submission).
Fig. 3. Incidence of patients with myelodysplastic syndrome by sex in the United States (Surveillance, Epidemiology, and End Results data, based on the November 2017 submission).
MDS IPSS-R Components (Greenberg P et al 2012)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Categories and Associated Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetic risk group</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Very Poor</td>
</tr>
<tr>
<td>Marrow blast proportion</td>
<td>≤ 2%</td>
</tr>
<tr>
<td></td>
<td>> 2% - < 5%</td>
</tr>
<tr>
<td></td>
<td>5% - 10%</td>
</tr>
<tr>
<td></td>
<td>> 10%</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>≥ 10</td>
</tr>
<tr>
<td></td>
<td>8 - < 10</td>
</tr>
<tr>
<td></td>
<td>< 8</td>
</tr>
<tr>
<td>Platelet count (x 10⁹/L)</td>
<td>≥ 100</td>
</tr>
<tr>
<td></td>
<td>50 - < 100</td>
</tr>
<tr>
<td></td>
<td>< 50</td>
</tr>
<tr>
<td>Abs. neutrophil count (x 10⁹/L)</td>
<td>≥ 0.8</td>
</tr>
<tr>
<td></td>
<td>< 0.8</td>
</tr>
</tbody>
</table>

Possible range of summed scores: 0 - 10

<table>
<thead>
<tr>
<th>Cytogenetic Risk group</th>
<th>Included karyotypes</th>
<th>Median survival, mo</th>
<th>% Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>del(11q), -Y</td>
<td>60.8</td>
<td>2.9%</td>
</tr>
<tr>
<td>Good</td>
<td>Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)</td>
<td>48.6</td>
<td>65.7%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>+8, del(7q), i(17q), +19, +21, any single or double abnormality not listed, two or more independent clones</td>
<td>26.1</td>
<td>19.2%</td>
</tr>
<tr>
<td>Poor</td>
<td>der(3q), -7, double with del(7q), complex with 3 abnormalities</td>
<td>15.8</td>
<td>5.4%</td>
</tr>
<tr>
<td>Very poor</td>
<td>Complex with > 3 abnormalities</td>
<td>5.9</td>
<td>6.8%</td>
</tr>
</tbody>
</table>
IPSS-R (see: http://www.mds-foundation.org/ipss-r-calculator/)

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Points</th>
<th>% patients (n=7,012; AML data on 6,485)</th>
<th>Median survival, years</th>
<th>Median survival for pts under 60 years</th>
<th>Time until 25% of patients develop AML, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>0-1.5</td>
<td>19%</td>
<td>8.8</td>
<td>Not reached</td>
<td>Not reached</td>
</tr>
<tr>
<td>Low</td>
<td>2.0-3.0</td>
<td>38%</td>
<td>5.3</td>
<td>8.8</td>
<td>10.8</td>
</tr>
<tr>
<td>Intermediate</td>
<td>3.5-4.5</td>
<td>20%</td>
<td>3.0</td>
<td>5.2</td>
<td>3.2</td>
</tr>
<tr>
<td>High</td>
<td>5.0-6.0</td>
<td>13%</td>
<td>1.5</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Very high</td>
<td>>6.0</td>
<td>10%</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Only valid for:

- **Adults**
- **De novo disease**
- **Treated with supportive care**
- **At the time of diagnosis**

Predicting Outcomes in Myelodysplastic Syndrome

HIGH RISK:
- Blasts >10%
- >3 cytogenetic abnormalities
- Chromosome 7 or 3

LOW RISK:
- Isolated 5q-
- <2-5% blasts
- Single cytopenias
Acute Myeloid Leukemia Defined

- >20 “BLASTS” in blood or bone marrow
- Usually associated with worsening anemia and thrombocytopenia
- Often requires bone marrow biopsy to diagnose
Q & A
MDS: Current Treatment Options
MDS Treatment: What Are We Trying to Achieve?

1. Improve Cytopenias
 - Decrease transfusion needs
 - Improve symptoms
 - Reduce risks of bleeding, infection, cardiovascular events

2. Decrease Transformation to AML
 - Reduce # Blasts
 - Time to Transformation to AML

3. Extend Life
 - Improve Median Overall Survival

“CR” = complete remission
-normal CBC
-normal marrow
-normal cytogenetics
-not necessarily a “CURE”

“ORR” – overall response
-improvement in cbc/transfusion independence
-doesn’t meet CR definition
Low Risk MDS May Respond to “Stimulants”

• Erythropoietin Stimulating Agents (ESAs)
 • Procrit (once weekly)
 • Epogen (once weekly)
 • Aranesp (longer lasting)

• Neutrophils Stimulating Agents (GCSF, GMCSF)
 • Neupogen
 • Neulasta (longer acting)
 • Leukine
 • Can synergize with ESA to improve HGB too
Transfusions in MDS

• Can be life-saving, life-prolonging

• Platelets live about 7 days
 • 1 unit bump the platelets up by 45,000 (best case)

• Red Blood Cells live from 7-28 days on average
 • 1 unit bumps the hemoglobin 1 point
 • Ongoing transfusion of red cells can lead to iron overload – monitor the ferritin over time, consider chelation agents
Is serum ferritin a prognostic factor for survival in MDS?

- Malcovati et al. showed that iron overload resulting from transfusion dependency had a significant impact on OS

Malcovati L et al. Leuk Res. 2007;31(Suppl 3):S2–S6
Lenalidomide (Revlimid) for Deletion 5q MDS

Median duration of RBC transfusion independence among the 99 responders was 44 weeks (range: 0->67 weeks) at the time of the interim analysis.

Duration of RBC transfusion independence:
- Min: 0 weeks
- Median: 44 weeks
- Max: >67 weeks
Age Does NOT Significantly Affect Outcomes in Higher Risk MDS

Table 4. Age-Related Survival and AML Evolution of MDS Patients Within the IPSS Subgroups

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>Low (yr)</th>
<th>Int-1 (yr)</th>
<th>Int-2 (yr)</th>
<th>High (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Median Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(yr)</td>
<td>816</td>
<td>5.7</td>
<td>3.5</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Total no. of</td>
<td>267 (33)</td>
<td>11.8</td>
<td>5.2</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>patients (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (yr)</td>
<td>314 (38)</td>
<td>4.8</td>
<td>2.7</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60</td>
<td>176 (22)</td>
<td>9.0</td>
<td>4.4</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>> 60</td>
<td>59 (7)</td>
<td>3.9</td>
<td>2.4</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>≥ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 25% AML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution (yr)</td>
<td>759</td>
<td>9.4</td>
<td>3.3</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Total no. of</td>
<td>235 (31)</td>
<td>6.9</td>
<td>2.7</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>patients (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (yr)</td>
<td>295 (39)</td>
<td>> 9.4 (NR)</td>
<td>5.5</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60</td>
<td>171 (22)</td>
<td>> 5.8 (NR)</td>
<td>2.2</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>> 60</td>
<td>58 (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: NR, not reached.
Methyl Groups Silence Tumor Suppressor Genes – Cancers are Highly Methylated

2 FDA-approved Hypomethylating Agents:

- **VIDAZA** (5-azacytidine)
- **DACOGEN** (decitabine)

1 Novel HMA in Clinical

Figure 1 – Epigenetic silencing of gene expression. DNA methyl-transferases carry out the methylation of CpG dinucleotides, which triggers the process of gene silencing by recruitment of methyl binding domain (MBD) and Histone deacetylases (HDAC) to bind to the methylated DNA. This results in histone deacetylation and chromatin condensation leading to loss of transcription factor binding and subsequent repression of transcription.
Current Treatment Options in Int/High Risk MDS

5-AzaCytidine

- ORR 51%
- CR 16%

Decitabine yields similar results
Allogeneic Stem Cell Transplant in MDS

- Still the only option with potential for cure

- Still a high risk procedure with transplant-related mortality (TRM) approximately 15-25%

- Patient comorbidities a major risk factor for TRM

- Optimal donor younger, HLA-matched
Kaplan-Meier analysis of survival and cumulative incidence of relapse following allogeneic HSCT in MDS patients stratified according to their pre-transplant IPSS cytogenetic risk or the new MDS cytogenetic scoring system used for the IPSS-R.

Matteo G. Della Porta et al. Blood 2014;123:2333-2342
The **MEDALIST** Trial: Results of a Phase 3, RPCC Study of Luspatercept to Treat Patients with Very Low-, Low-, or Intermediate-Risk MDS Associated Anemia with Ring Sideroblasts Who Require RBC Transfusions

- **153 Patients** Luspatercept 1mg/kg SC every 21 days
 - **38%** achieved transfusion-independence at 8 weeks
 - 28% achieved transfusion-independence at 12 weeks

- **76 Patients** Placebo
 - 13% achieved transfusion-independence at 8 weeks
 - 8% achieved transfusion-independence at 8 weeks
Imetelstat Treatment Leads to Durable Transfusion Independence in RBC Transfusion-Dependent, Non-Del(5q) Lower Risk MDS Relapsed/Refractory to ESA

- 38 Patients received Imetelstat 7.5 mg/kg IV every 4 weeks
 - **37%** achieved transfusion-independence at 8 weeks
 - 26% achieved transfusion-independence at 24 weeks
 - Median time to onset of TI 8 weeks
 - Median duration of TI not reached

- Neutropenia and thrombocytopenia in 20-25%
Background: Guadecitabine (SGI110) in MDS First Evaluated by SU2C-Sponsored Dream Team

Phase I: Less rapid degradation by cytidine deaminase = longer t½ than decitabine

Phase II: n=102, 60mg/m2 or 90mg/m2

- Previously treated patients:
 - 30% ORR

- Treatment naive patients: 20% CR
 - 58% transfusion-independent for RBC
 - 46% transfusion-independent for platelets
Guadecitabine PK vs Decitabine

Issa et al. Lancet Oncol 2015
MD Anderson: Guadecitabine for Int/Higher Risk MDS

• 97 patients received 60mg/m2 SC x 5 days every 28 days
• ORR 65% (vs. 51% in the original Phase II study)
• CR 26%
• mCR + Hematologic Improvement 32%
• HI 7%
Is Immune Exhaustion an Issue in MDS?
 Trials Using Immune Checkpoint Inhibitors?

• Phase II: Azacitidine + Nivolumab or Ipilimumab (MDA)
 – ORR 60-70% as FRONTLINE treatment
 – CR 40% with AZA + Nivolumab, 14% with AZA + IPI
 – CR 6/20 IPI alone (30%)

• Phase Ib: AZA + Atezolizumab
 – ORR 62%
 – CR 14%
Phase I/II: Guadecitabine + Atezolizumab in HMA-Relapsed or Refractory MDS at USC, UMD, FCCC (VARI-SU2C)

• Completed Phase I for safety
• Now Enrolling Phase II
• ORR 33% as of December, 2018
• 1/9 patients from phase I in CR
Rigosertib – No OS Difference but…

Figure 2: Overall survival curves for the rigosertib group and best supportive care group
(A) For the intention-to-treat population, (B) patients with primary hypomethylating drug failure, and (C) patients with IPSS-R very high risk. IPSS-R=Revised International Prognostic Scoring System.
Rigosertib

• Interferes with RAS/RAF/MEK/PI3K pathways
• Now being combined with azacitidine in upfront treatment of MDS
 – 59% ORR in Previously Treated MDS patients
 – 79% ORR in Treatment-Naïve patients
• An oral form is now available
• GU toxicities like bleeding being addressed
Phase 1b/2 Study of APR-246 + AZA in p53-mutated MDS and AML

- 93% ORR in MDS, 67% CR
- 100% ORR in AML, 80% CR
- GI toxicity and peripheral neuropathy
OTHERS

• SL401R – CD123 (IL-3R) targeted therapy with some CRs in CMML, also being evaluated in HR MDS
• NEDD8 inhibitors
• IDH1/2 inhibitors
• Transplant
Clinical Trials

Stand Up To Cancer
Tonight 8PM