Myelodysplastic syndrome

Jeanne Palmer, MD Mayo Clinic, Arizona

What is Myelodysplastic syndrome?

 A disease where the bone marrow doesn't work appropriately

• What does that mean??

Red blood cells

- Carry oxygen
- When low: anemia
- When not enough red blood cells
 - Fatigue
 - Shortness of breath
 - Difficulty concentrating

White blood cells

- Fight infection
- When too low:
 - Increased risk for infection

Platelets

- Help blood clot
- When too low:
 - Increased bleeding

The factory

Diagnosis

- Suspect when blood counts low
- Must rule out other causes
 - Nutritional deficiency (iron, B12, folate)
 - Liver disease
 - Autoimmune disease
- Bone marrow biopsy

What causes MDS?

Genetic mutations

 Exposure to toxic substances/radiation/chemicals

MDS Rate/100,000

Ma X et al. Cancer. 2007:109:1536

Treatment: depends on goals

- Curative:
 - Bone marrow transplant
- Improvement of counts/slow down progression to AML/prolong life
 - Azacitadine and decitabine both good options for treatment
 - Can consider lenolidomide (specially if 5q- present)

Now what??

Assess risk

Cytogenetic scoring system

Prognostic subgroups	Cytogenetic abnormalities	Median survival, y	Median AML evolution 25%,y	
Very good	-Y, del(11q)	5.4	NR	
Good	Normal, del(5q), del(12p), del(20q), double including del(5q)	4.8	9.4	
Intermediate	del(7q), +8, +19, i(17q), any other single or double independent clones	2.7	2.5	
Poor	-7, inv(3)/t(3q)/del(3q), double including -7/del(7q), complex: 3 abnormalities	1.5	1.7	
Very poor	Complex: > 3 abnormalities	0.7	0.7	

Case Presentation

- 67 year old gentleman
- CBC:
 - Hb: 7.7 gm/dl
 - WBC: 1.8 x 10⁹/L ANC: 0.6 x 10⁹/L
 - Platelets: 20 x 10⁹/L
- BM biopsy: dysplasia with 8% blasts
- Karyotyping: Diploid
- PS: 1

IPSS-R prognostic score value

Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very good	_	Good	_	Intermedi ate	Poor	Very poor
BM blast, %	≤ 2	_	> 2%- < 5%	_	5%-10%	> 10%	_
Hemoglobin	≥ 10		8- < 10 (< 8) –		
Platelets	≥ 100	50-< 100	< 50	_			_
ANC	≥ 0.8	(< 0.8)	_				_

Score=6

IPSS-R Risk Category by Score

Risk category	Risk score			
Very low	≤ 1.5			
Low	> 1.5-3			
Intermediate	> 3-4.5			
High	> 4.5-6			
Very high	> 6			

Survival based on IPSS-R prognostic risk-based categories.

Other ways of defining risk

Next generation sequencing

 Molecular mutations that may define risk

Transfusion dependence

Goals of treatment

 Maintaining blood counts to help improve symptoms

Prevention of progression to AML

• Curative?

Treatments

- Clinical trials (clinicaltrials.gov)
- Observation
- Growth factors
- Hypomethylating agents (vidaza or dacogen)
- Bone marrow transplant
- Supportive care

Blood count directed therapy

- Hemoglobin:
 - Transfusion: to a hemoglobin of 7 or 8
 - Erythropoietin stimulating agents (Procrit ©, Aranesp©) to maintain hemoglobin greater than 10 or 11
 - When transfusion number >20- consider iron chelation

Blood count directed therapy continued

 Platelets: transfused to 10 or 20 (spontaneous bleeding more common in patients when platelets <10)

- White blood cells:
 - Neupogen (generally not recommended as therapy alone- may help erythropoietin stimulating agents work better)

Iron overload

- Each unit of blood has 250 mg of iron
- After 20 units of blood start thinking about iron overload
- Ferritin >1000
- LIC >3

Iron chelation

- Desferoxime:
 - Subcutaneous infusion overnight
 - Side effects: visual toxicity, otootoxicity
 - Renal + liver toxicity

- Deferasirox
 - Oral iron chelator
 - May cause decrease in blood counts, liver dysfunction, rash
 - ***use with caution if kidneys don't work***

Hypomethylating agents

- They change the signaling in the bone marrow
- No head to head comparison
- Given 5-7 days once a month
- Decitabine: must be given IV
- Azacitadine: IV or subcutaneous

More on hypomethylating agents

What do they do?

- Improve survival
- Improve blood counts
- Slow down progression to leukemia

When to use them

- High risk disease
- Poor risk chromosome
- Regular blood transfusions

Revlimid-Lenalidomide

 Works best in patients with 5q- on cytogenetics

Works in some patients with anemia

Bone marrow transplantation

- Involves high dose/intermediate dose chemotherapy followed by hematopoietic stem cell infusion.
 - Chemotherapy helps reduce disease + suppress immune system
 - New blood system works better
 - New stem cells fight off underlying disease 'graft versus myelofibrosis'
- Historically, pt <55, however, now patients up to 75 years old will undergo transplant
- Autologous: uses patients own stem cells, allows use of high dose chemotherapy
- Allogeneic: uses donor stem cells, either related or unrelated

Alternative names

- Alternative names:
 - Peripheral blood stem cell transplant
 - Hematopoietic stem cell transplant
 - Bone marrow transplant
- Bone marrow vs peripheral blood
 - Refers to how the hematopoietic stem cells are collected:
 - Bone marrow: through bone marrow harvest, a procedure performed in the OR
 - Peripheral blood collection: collected after giving neupogen via leukopheresis

What to expect during a bone marrow transplant consultation

Bring a family member/friend

Be prepared to be scared

If you can, record the consultation

MAYOIf you have any doubts get a second CLINIC opinion

Who can be a donor?

- Brother or sister (same mom and dad):
 - Matched related donor (MRD) preferable only 30% of the population will have one

- Matched unrelated donor (MUD)
 - Ideally full match- ie 10/10, 8/8

 A donor does not need to be the same blood type How does transplant work

Conditioning

http://biomed.brown.edu/Courses/BI108/BI108_2007_ Groups/group07/stemcells/img/Allogenic_big.gif

Risks of transplantation

- Graft versus host disease
 - New immune system attacking health tissues
 - Can be acute or chronic

- Infection
 - Bacteria/viruses/fungus inside your body
 - Exposure to viruses/bacteria/fungus
 - Many restrictions in place following transplant

What is required

- Live within 30-60 minutes from the transplant center for 100 days after the transplant
- Take 1 year off of work
- 24/7 caregiver for first 100 days
- Restrictions to prevent infections
 - Avoid crowds
- CLINIC Do not eat fast food/ buffet food/ salad bar

Long term effects of BMT

Quality of life

Chronic GVHD

Long term health risks

Newer therapies

- Clinical trials using "targeted" agents
 - Spliceosome inhibitors
 - IDH1/IDH2 inhibitors
- Luspatercept (for anemia)
- Check point inhibitors
- Histone deacetylating agents

MDS is a complex biological disease

Summary

MDS is a disease characterized by dysfunctional blood making

Treatments can be supportive or curative

Important to know your risk

Consider bone marrow transplant when appropriate

THANK YOU FOR YOUR ATTENTION