

Evaluation and care of patients and families with inherited predisposition to develop MDS

MDS Foundation's Educational Patient-Caregiver Forum Saturday August 10, 2019

Sioban Keel, MD Associate Professor of Medicine

Bone marrow failure definition-

Bone marrow is unable to keep up with the body's need for healthy blood cells

1. Acquired

- Myelodysplastic syndromes (MDS)
- Aplastic anemia
- PNH
- Toxins (e.g., drugs, irradiation, infections)

2. Inherited*

* Are at risk for developing MDS or leukemia

From the Cell to DNA

Mutations – changes in the DNA

Normal DNA DNA with a mutation

T-A

T-A

Normal DNA I have a cat

DNA with a mutation

I have a rat

• Mutations can be inherited or acquired during a person's life

Mendelian Inheritance

Mom * wild-type Dad Wild-type Wild-type

Example - Autosomal dominant

Genetic predisposition to cancer

- 1999 1st reported inherited acute leukemia and MDS predisposition syndrome - Familial platelet disorder with associated myeloid malignancy due to mutations in RUNX1.²
 - 1. Broca P. Traite des tumeurs. 1866. 2. Song WJ et al. Nat Genet 1999: 23(2).

Genetic laboratory testing

Karyo	type

FISH

Microarray

Next-gen sequencing

Coverage
Resolution
Source

Detect balanced rearrangements?

Genome

Low

Living cells

Yes

Targeted

High

Living/fixed cells

Yes

Genome

Higher

DNA

No

Exome/genome

Highest

DNA

Sometimes

Inherited bone marrow failure & inherited MDS/leukemia predisposition syndromes

- Marrow failure
 - Often hypocellular
- ± Cancer predisposition

± Findings on exam

Inherited MDS predisposition syndromes

- Classical inherited bone marrow failure syndromes
- Germline predisposition for hematopoietic malignancy
 - CEPBA
 - DDX41
 - 14q32.2 genomic duplication (ATG2B/GSKIP)
- Germline predisposition for hematopoietic malignancy with pre-existing cytopenia(s) and/or other organ dysfunction prior to hematopoietic malignancy presentation
 - ANKRD26
 - ETV6
 - GATA2 Deficiency Syndrome
 - RUNX1 Familial platelet disorder with associated myeloid malignancy
 - SAMD9 MIRAGE syndrome; SAMD9L Ataxia Pancytopenia Syndrome
 - SRP72
- Germline predisposition for myeloid neoplasms and solid tumor cancers
 - Constitutional mismatch repair deficiency
 - Hereditary breast and ovarian cancer (e.g., BRCA1, BRCA2)
 - Li-Fraumei syndrome
 - RASopathies
 - Other rare DNA repair syndromes (e.g., BLM)

Cumulative incidence of MDS by age

 Cumulative incidence of MDS by age 50 were 5% in DBA, 20% in DC, 50% in FA, and 65% in SDS

Why do we need to recognize these inherited syndromes?

1. Some syndromes are associated with a risk of developing MDS or leukemia

- Allows surveillance prior to development of MDS/leukemia.
- Informs hematopoietic stem cell transplant donor selection, timing, and preparatory regimen for patients who develop MDS/leukemia.

2. Follow-up and care for non-blood related complications

GATA2 deficiency syndrome

Surveillance and treatment considerations (before development of MDS)

- CBC and blood count monitoring
- HPV vaccination
- Prophylactic antibiotics for certain infections (NTM)
- Family counseling and follow-up

3. Appropriate family counseling and follow-up

Patients Pursuing a Genetic Consultation

Medical Evaluation

Psychosocial Counseling

Hematologic Malignancy Genetics Clinic

Services offered to individuals and families

- Hematologic malignancies cancer risk assessment and genetic testing
- HSCT planning
- Surveillance Program
- Family counseling
- Research opportunities to improve patient care

How do you distinguish between acquired & inherited marrow failure?

- Clinical History
- Physical Exam
- Laboratory Evaluation
- Family History
 - Other members with similar disease
 - Malignancy

Lack of a concerning family history or physical exam findings <u>DOES</u> <u>NOT</u> exclude the possibility of an underlying inherited cause.

Pediatric & young adult patients transplanted for "acquired disorders" had underlying inherited disorders

Study Design

- Fred Hutchinson Cancer Research Center Cell Bank Repository of prehematopoietic stem cell transplant DNA
- MDS patients ≤ 40 years-old and transplanted 2001-2011 or MDS or AML with monosomy 7 patients <20 years-old and transplanted 1991-2001

Findings

- 12.7% (14/110) MDS/AML carried pathologic mutations
- Absence of a family history or congenital anomalies does not exclude a genetic cause

Which patients are we currently testing?

- Patient with a suggestive personal and/or family history
- Younger patients presenting with marrow failure, MDS, or leukemia
- Family member in a known inherited predisposition family (mutation-directed sequencing)
- Potential sibling allogeneic stem cell donor in a known inherited predisposition family
- Patient with potential inherited mutation found on testing cancer cells

Complexities of genetic testing: inherited vs. acquired mutations

Inherited mutations

Acquired mutations

Heritable - can pass mutation on to children

Mutation in a cancer (e.g., lung cancer)

- Not heritable
- Present only in the cancer

In MDS, cancer is in the blood – so testing blood can be confusing.

Other complexities of genetic testing

- Limitations of different sequencing methods
- Interpretation of sequencing results is complicated
- Evolving field (new genes, new mutations)

Treatment options

- Depends on specific underlying syndrome
- Cancer surveillance
- Supportive care
- Other therapies depending on disease
 - –Androgens (Fanconi anemia)
 - -Steroids (DBA)
- Bone marrow transplantation

Concluding thoughts

- Recognition of an underlying inherited predisposition to develop MDS guides medical care.
- Goal of diagnosis and follow-up is to keep people healthy.

Questions?

Example pedigree: Autosomal dominant disease

Defined inherited bone marrow failure or MDS/AML predisposition syndromes – 74 patients

