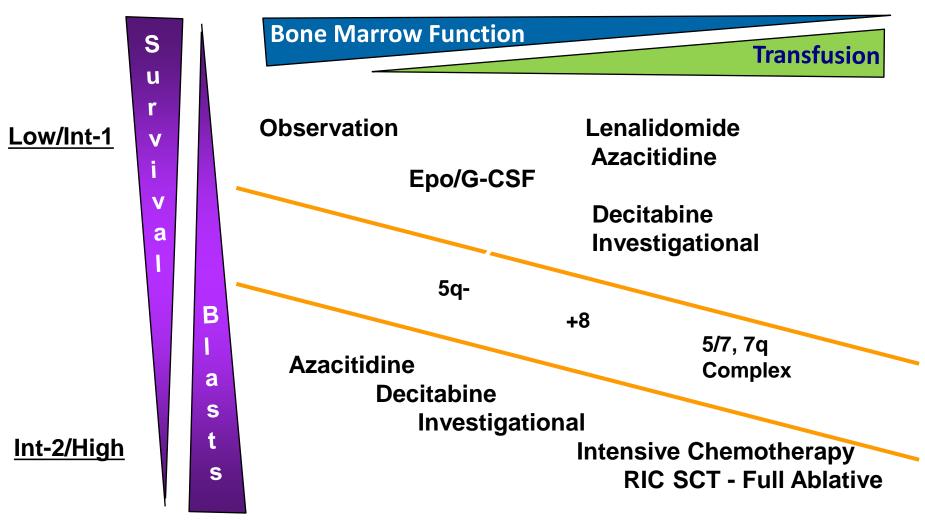
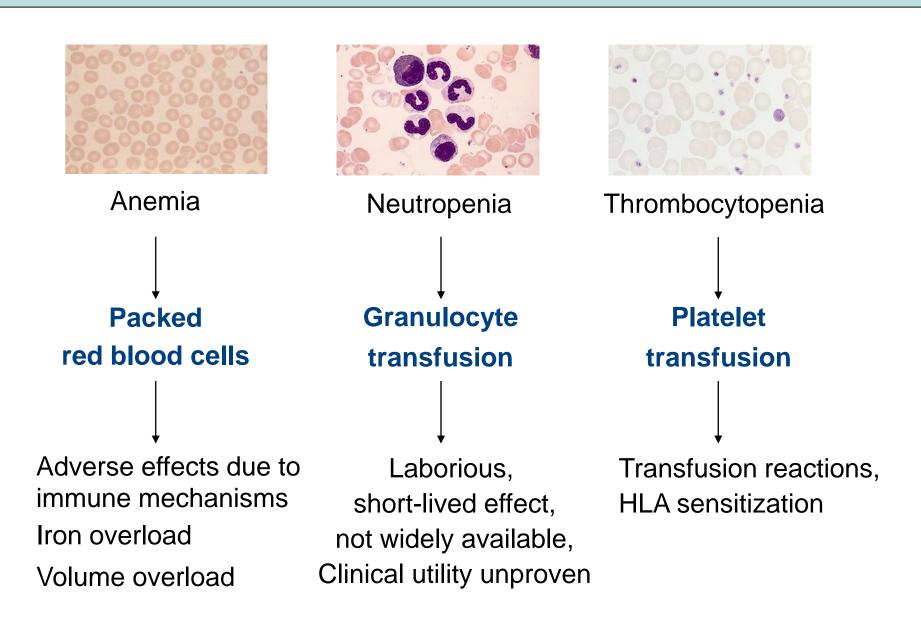
Non-transplant Therapy for MDS

Bart Scott, MD Associate Member, FHCRC Associate Professor, UWMC



MDS Treatment Algorithm

Asymptomatic


Symptomatic

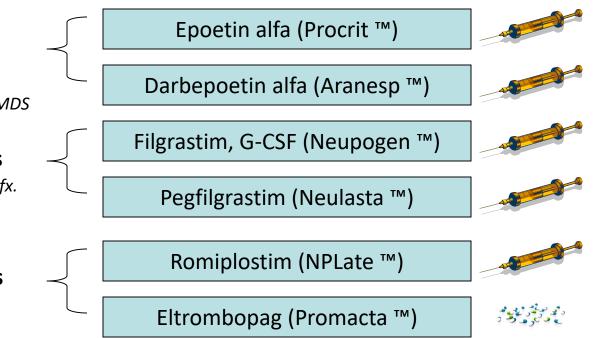
Treatment Options for Lower-risk MDS

- Transfusion Support
- Growth Factors
- Lenalidomide/Revlimid
- Azacitidine
- Clinical Trial

MDS: Transfusion Therapy

Growth Factors

Red cell growth factors


Medicare only pays for these if Hb <10 g/dL Safety concerns in solid tumors, not (yet) in MDS

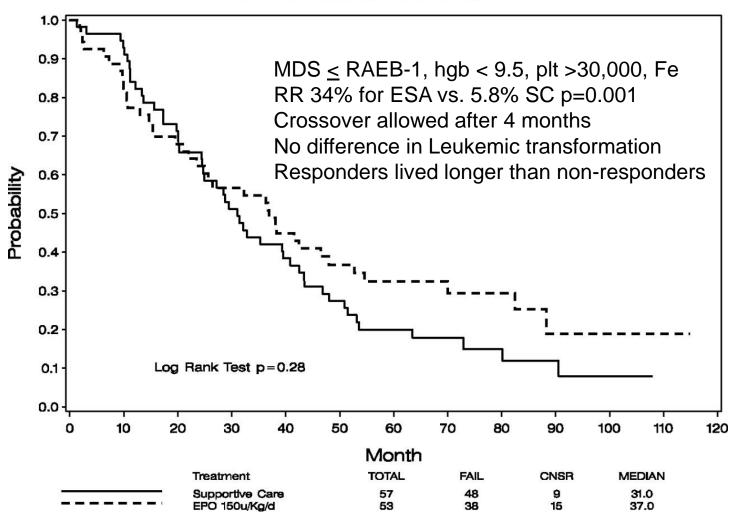
White cell growth factors

No survival benefit but may help decrease infx. Sometimes combined with red cell factors

Platelet growth factors

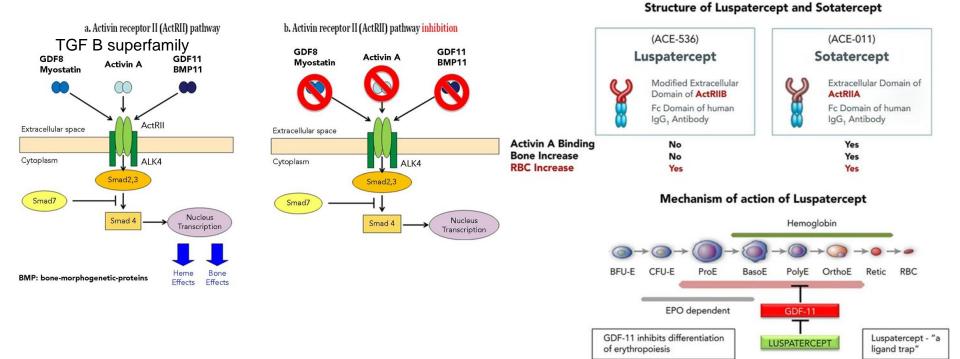
New; risks still being defined in MDS Reports of increased blasts in a few patients Only FDA-approved for immune thrombocytopenia and AA

Growth Factors in MDS


Patient Criteria	Probability of Response ¹
Transfusion need < 2 units per mo <u>and</u> serum EPO < 500 units/L	74%
Only one of the above criteria	23%
Neither criteria	7%

- •Epo 10,000 u/day x 5 days + GCSF 75-300 mcg/day 3 x week¹
- •Other studies suggest no benefit with adding GCSF²
- •10% marrow myeloblasts no benefit²
- •GSCF not recommended for neutropenic prophylaxis³
 - •Intermittent use in patients with severe infection and neutropenia
- •Tepo-mimetics under investigation⁴
 - •46% platelet response, 2 patients progressed to AML

¹Hellstrom-Lindberg E., et al. *Br J Haematol.* 2003;120:1037-1046
 ²Park, et al. *Blood.* 2008;111:574-582
 ³Negrin et al. *Ann Intern Med.* 1989;110:976-984
 ⁴Kantarjian et al. *J Clin Onc* 2010 Jan 20;28(3):437-44


Epo-G vs. S.C.

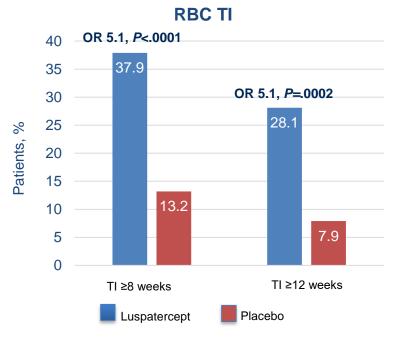
Overall Survival by Treatment

Greenberg P., et al. Blood. 2009;114:2393-1400

ACTRII Ligand Traps

Pierre Fenaux et al. *Blood* 2019;133:790-794

Phase 3 MEDALIST Study of Luspatercept* for Patients With Lower-Risk MDS-RS Requiring RBC Transfusions: Study Design and Patients


Key eligibility criteria • Age ≥18 years • IPSS-R very low-, low-, or intermediate-risk MDS with ringed sideroblasts (RS) Refractory, intolerant, or ineligible to receive ESAs • **Require RBC transfusions** 2:1 Luspatercept (n=153) RANDOMIZED 1.0 mg/kg titrated up to 1.75 mg/kg, if needed, SC q3w for ≥24 weeks Placebo (n=76) q3w Primary endpoint: RBC-TI for ≥8 weeks between week 1 and 24 Secondary endpoints: RBC-TI for ≥12 weeks between week 1 and 24, mHI-E (IWG 2006) for consecutive 56days

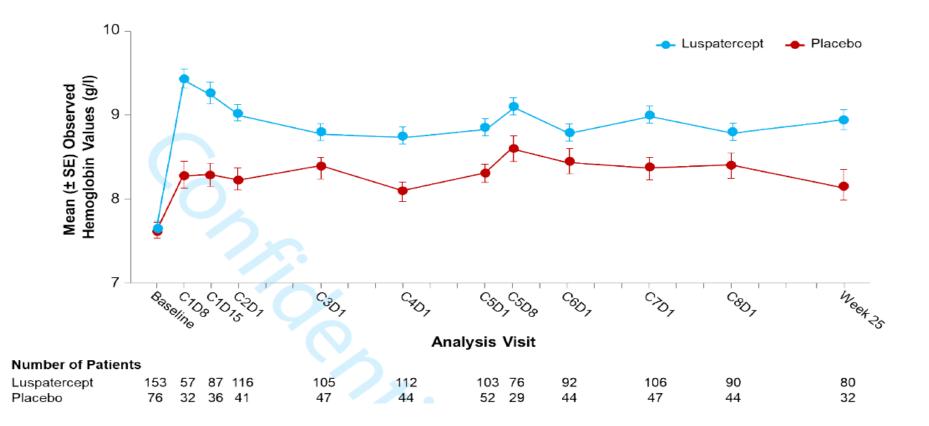
mHI-E, modified hematologic improvement-erythroid.

*Luspatercept is investigational and not currently approved as part of any oncology regimen

Patient Character	ristics	Luspatercept (n=153)	Placebo (n=76)
Median age, years	s (range)	71 (40-95)	72(26-91)
Median time from months (range)	diagnosis,	44.0 (3-421)	36.1 (4-193)
Male, n (%)		94 (61.4)	50 (65.8)
Median RBC units over 8 weeks in th prior to treatment,	e 16 weeks	5 (1-15)	5 (2-20)
RBC units/8 weeks,	<6 87 (56.9)		43 (56.6)
%	≥6	66 (43.1)	33 (43.4)
Baseline serum	<200 IU/L	88 (57.5)	50 (65.8)
erythropoietin, n (%) ≥200 IU/L		64 (41.8)	26 (34.2)
Pre-transfusion Hb, median (range), g/dL		7.6 (6-10)	7.6 (5-9)
SF3B1 mutation, r	า (%)	141 (92.2)	65 (85.5)

Phase 3 MEDALIST Study of Luspatercept for Patients With Lower-Risk MDS-RS Requiring RBC Transfusions: Results and Summary

^aDefined as a reduction in transfusion of \geq 4 RBC units/8 weeks or a mean Hb increase of \geq 1.5 g/dL/8 weeks in the absence of transfusions.


 Compared with placebo, patients receiving luspatercept were more likely to achieve an mHI-E response^a (52.9% vs 11.8% during weeks 1–24; *P*<0.0001)

Selected TRAEs, n (%)	Luspatercept (n=153)	Placebo (n=76)
Fatigue	41 (26.8)	10 (13.2)
Diarrhea	34 (22.2)	7 (9.2)
Asthenia	31 (20.3)	9 (11.8)
Nausea	31 (20.3)	6 (7.9)
Dizziness	30 (19.6)	4 (5.3)

Summary

- Compared with placebo, luspatercept significantly reduced transfusion burden for patients with anemia and very low-, low-, and intermediate-risk MDS-RS requiring transfusions
- The safety profile for luspatercept was manageable in this patient population

Medalist Study

Phase 2 Pilot Study of Eltrombopag* for Patients With Low- to Intermediate-2-Risk MDS: Study Design and Patients

Key eligibility criteria

- Age \geq 18 years
- MDS, with RCUD, RARS, RCMD-RS, or RCMD (by WHO)
- IPSS risk: low or intermediate-1/2
- Platelet count ≤30,000/uL or platelet-transfusion-dependence (requiring ≥4 platelet transfusions in 8 weeks prior to study), or Hb ≤9.0 g/dL or RBC transfusion-dependence (requiring ≥4 units of PRBCs in 8 weeks prior to study), or ANC ≤500

Eltrombopag (n=30) 50 mg/day, up to 150 mg/day, with dose increases of 25 mg q 2 weeks

Responders Extension

arm

Primary endpoint: Hematologic response at 16 or 20 weeks [Defined as either (1) an increase in platelet counts \geq 20,000/uL or TI for \geq 8 weeks, or (2) Hb increase of \geq 1.5g/dL from baseline, or a reduction in RBC transfusions \geq 50%, or (3) an increase in ANC \geq 0.5x10⁹/L or by \geq 100% in patients with a baseline ANC <0.5x10⁹/L]

*Eltrombopag is not currently approved for treatment of MDS/AML

Vicente A, et al. Abstract 229. https://www.clinicaltrials.gov/ct2/show/NCT00961064.

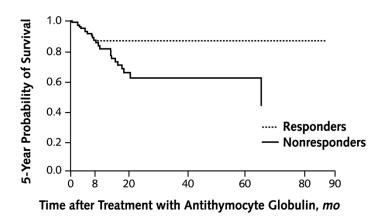
Patient Characteristics		(N=30)
Median age, years (range)		65 (35-85)
	AA	43
Diagnosis, %	Hypoplastic MDS	17
	Primary MDS	40
	RCUD	11 (37)
WHO Subtype, n (%)	RCMD	11 (37)
	MDS-U	6 (20)
	RARS	2 (6)
	Good	16 (53)
IPSS, n (%)	Intermediate	13 (43)
	Poor	1 (4)
Lines of treatment, n (%)	≥2	12 (40)

Phase 2 Pilot Study of Eltrombopag for Patients With Low- to Intermediate-2-Risk MDS: Results and Summary

Efficacy

- 47% of patients (14/30) met the primary endpoint of hematological response; all responders continued eltrombopag on the extension arm
 - 10/14 responding patients achieved a robust response^a (RR) after a median treatment duration of 15 months (range 7-27 months)
 - PB cell counts significantly declined in 5/10 RR and eltrombopag was restarted per protocol
 - In 4 of these patients PB cell counts recovered
 - 1 patient did not achieve a second response
- Based on IPSS, 4/30 (13%) had PD, including 2 non-responders and 2 responders, at a median follow-up of 4 months (range, 3-35 months)
- NGS for somatic variants was performed in 29/30 patients
 - At baseline, 22/29 (76%) patients had ≥1 mutation: TET2 (14.5%), ASXL1 (12.5%), SF3B1 (8.3%), SETBP1 (8.3%), ATM (8.3%), and ZRSR2 (8.3%)
 - After eltrombopag, additional somatic variants in different genes were detected in 4/14 responders and 7/16 non-responders
 - The VAF of variants detected at both time points were similar

aRR: stable hematopoiesis with Hb $\geq\!10$ g/dL, thrombocytes $\geq\!50.000/L,$ and ANC $\geq1000/L.$

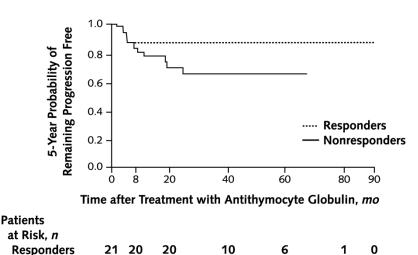

TRAEs (in >5% of patients), n (%)	Any Grade	Grade 3/4
Increased liver transaminases	3 (10)	3 (10)
Nausea and vomiting	5 (17)	-
Headache	4 (13)	-
Jaundice	8 (27)	—
Abdominal pain	4 (13)	-
Myalgia	3 (10)	_
Skin rash and pruritis	4 (13)	_

Summary

- Hematologic response with eltrombopag was achieved in 47% of patients
- Although there were no AML transformations observed on eltrompopag, 4 patients had progression of MDS
- 5/20 patients acquired new cytogenetic abnormalities with eltrombopag

ATG Therapy in MDS

0



Patients

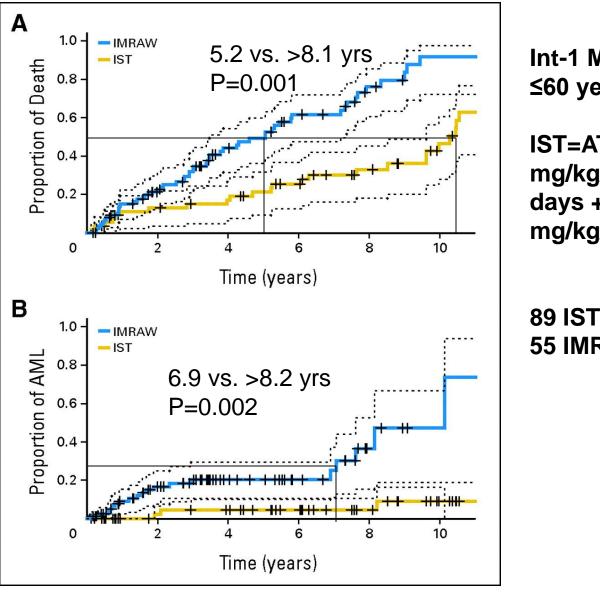
Nonresponders 40 27

at Risk, <i>n</i>						
Responders	21	20	20	10	6	1
Nonresponders	40	30	18	7	3	0

15

7

2


0

0

- Phase II study of ATG
 - 61 RA, RARS, RAEB(FAB)
 - Transfusion dependent
 - 40 mg/kg/day x 4 days
- 21/61 (34%) patients with major HI-E
 - Younger age <58</p>
 - HLA DR 15
 - Shorter duration of RBC tfn

Molldrem JJ, et al. Ann Int Med. 2002;137:156-163; Saunthararajah Y. Blood. 2003;102:3025-3027

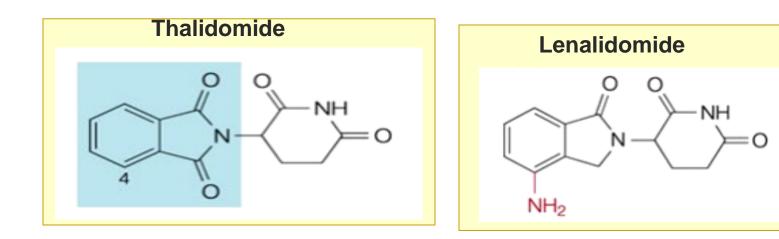
Survival and AML evolution after ATG

Int-1 MDS ≤60 years

IST=ATG 40 mg/kg/day x 4 days + CSA 5-12 mg/kg/day

55 IMRAW

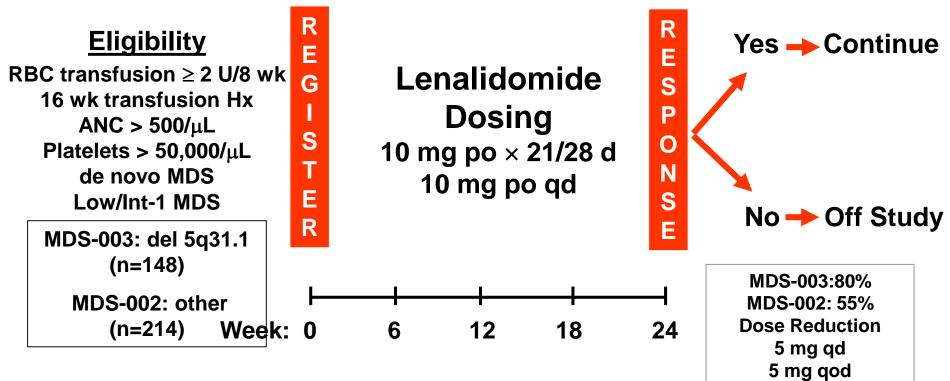
Sloand, E. M. et al. J Clin Oncol; 26:2505-2511 2008


Immunosuppressive Therapy (IST): Summary

- Age is the strongest variable for IST response^[1,2]
 - Pathogenetic difference in MDS of younger adults
- Responses are durable and may modify adverse effect of RBC-TI on OS^[2]
- Karyotype may influence IST response and disease biology
 - Low frequency of IST response in del(5q)^[2]
 - High response rate in trisomy 8^[3]
 - NIH 8/17 (47%)
 - WT1 amplification with specific cellular response
 - Autoimmune hematopoietic suppression may select for +8 expansion

^{1.} Saunthararajah Y, et al. Blood. 2002;100:1570-1574. 2. Sloand EM, et al. J Clin Oncol. 2008;26:2505-2511. 3. Sloand E, et al. ASH 2004. Abstract 1431.

Lenalidomide (REVLIMID[®], Celgene)

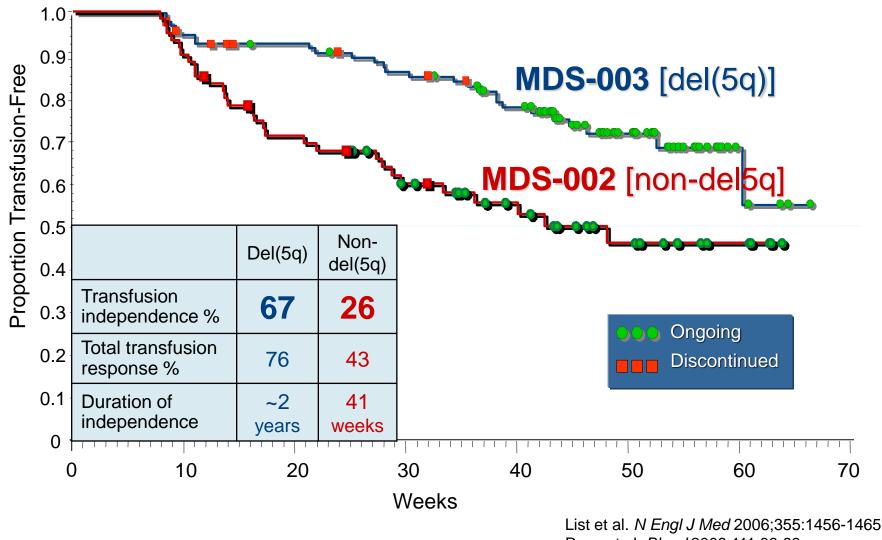

- No significant neurotoxicity, somnolence, or constipation
- Potent modulator of myelosuppressive properties

List A. New Eng J Med. 2005;352(6):549-557.

Lenalidomide in Transfusion-Dependent Patients With Low/Int-1 MDS (MDS-002/003)

Multicenter Phase II Studies

Primary endpoint: transfusion independence Secondary endpoints: cytogenetic response, pathologic response, safety

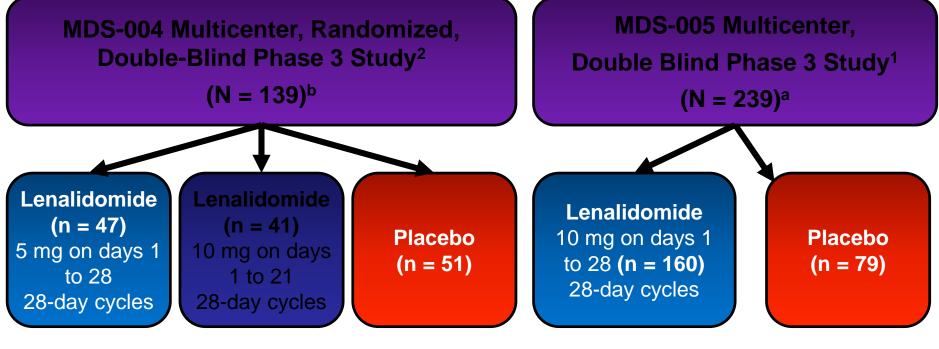

> List et al. *N Engl J Med* 2006;355:1456-1465 Raza et al. *Blood* 2008;111:86-93

MDS-002/003: Treatment-Related Adverse Events

Grade ≥ 3 Adverse Events, %	Non-del(5q)	del(5q)
Thrombocytopenia	20	44
Neutropenia	25	55
Pruritus	1	3
Rash	4	6
Diarrhea	1	3
Fatigue	4	3

List AF, et al. *N Engl J Med.* 2006;355:1456-1465 Raza A, et al. *Blood.* 2008;111:86-93.

Lenalidomide: Duration of Transfusion Independence



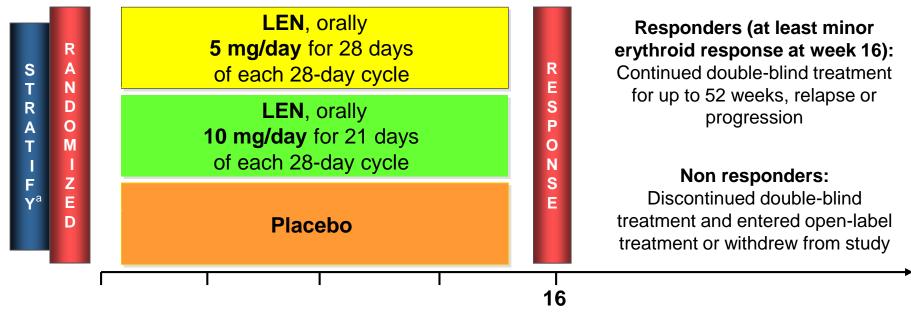
Raza et al. *Blood* 2008;111:86-93

Lenalidomide in Transfusion-Dependent Patients With Low/Int-1 MDS MDS-004/005

Double-Blind Randomized Placebo Control Trial

 2 randomized trials using lenalidomide for the treatment of patients with primary, lower-risk (IPSS low/Int-1–risk), del(5q)^b and non-del (5q)^a MDS with RBC-TD

Primary endpoint: RBC-TI (≥ 26 weeks)


Primary endpoint: RBC-TI (≥ 8 weeks)

With or without additional chromosomal abnormalities. ^b Modified intent-to-treat population. del, deletion; Int, intermediate; IPSS, International Prognostic Scoring System; MDS, nyelodysplastic syndromes; RBC, red blood cell; TD, transfusion dependence; TI, transfusion independence.

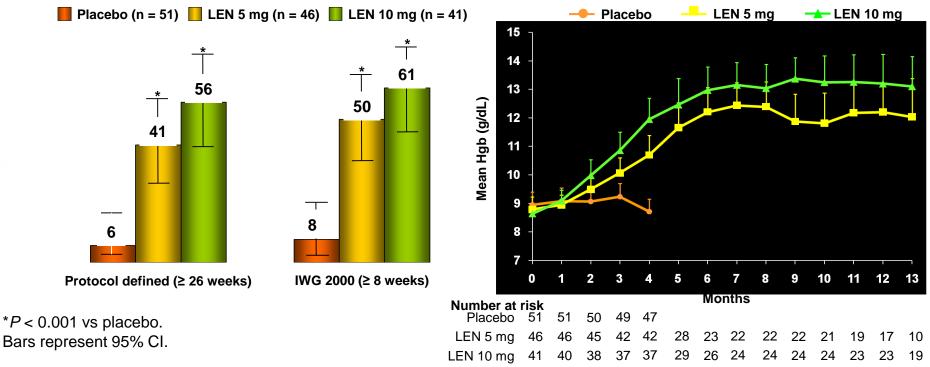
1. Santini, et al. *Jnl Clin Oncol.* 2016;34:2988-2996. 2. Fenaux P, et al. *Blood.* 2011;118:3765-3776.

MDS-004 Study Design

Double-blind phase^b: Len 5 mg or 10mg vs PBO

- Key inclusion criteria: centrally-confirmed IPSS-defined Low- or Int-1-risk MDS with del(5q) +/- additional cytogenetic abnormalities, and RBC-transfusion dependency (no consecutive 56 days without transfusion within last 112 days)
 - Patients with ANC < 500 cells/mcL or platelet count < 25,000/mcL were excluded
- Primary endpoint: RBC-TI for ≥ 26 weeks (absence of transfusions during consecutive 26 weeks on treatment and increase hemoglobin > 1 g/dL from baseline
- Secondary endpoints: erythroid response, duration of RBC-TI, cytogenetic response, time to AML progression from randomization, and adverse events

Fenaux P, et al. Blood. 2011;118:3765-3776


^a Patients stratified by IPSS score and cytogenetic complexity prior to randomization.

^b Bone marrow assessments were performed at baseline, 12 weeks, and every 24 weeks thereafter.

ANC, absolute neutrophil count; IPSS, International Prognostic Scoring System; LEN, lenalidomide;

MDS, myelodysplastic syndromes; PBO, placebo; RBC-TI, red blood cell transfusion independence.

MDS-004-Efficacy: RBC-TI and Hemoglobin Over Time (mITT Population^a)

- Consistent results were observed in the ITT population (N = 205)
- Achievement of RBC-TI for ≥ 26 weeks was not affected by age, gender, FAB classification, IPSS risk, time from diagnosis, cytogenetic complexity, baseline platelet counts, or number of cytopenias at baseline
- Hemoglobin increased over time with a maximum median Hgb change in responders of LEN 5 mg of 5.1 g/dL and LEN 10 mg of 6.3 g/dL

^a mITT population defined as patients with centrally-confirmed MDS who received ≥ 1 dose (N = 138). CI, confidence interval; FAB, French-American-British; IPSS, International Prognostic Scoring System; Hgb, hemoglobin; IWG, International Working Group; LEN, Ienalidomide; mITT, modified intent-to-treat; RBC-TI, red blood cell transfusion independence.

.Fenaux P, et al. Blood. 2011;118:3765-3776

MDS-005 Lenalidomide in non-del 5q **MDS**

Table. Key efficacy data.

Response	LEN (n = 160)	PBO (n = 79)	
RBC-TI ≥ 56 days, n (%)	43 (26.9)*	2 (2.5)	
Duration of RBC-TI \geq 56 days, median (95% CI), weeks ^a	32.9 (20.7-71.1)	NE (NE-NE)	
RBC-TI ≥ 168 days, n (%)	28 (17.5)	0	
*Responding pts only.	■ EPO ≤ 100 r	nU/mL (n = 40)	■ Prior ESA use and EPO ≤ 500 mU/mL (n = 33)
* <i>P</i> < 0.001.	■ EPO 200–50	0 mU/mL (n = 27) 0 mU/mL (n = 30)	 Prior ESA use and EPO > 500 mU/mL (n = 6) No prior ESA use, overallt (n = 3)
NE, not estimable.		nU/mL (n = 58) = .002*	
Patients With RBC-T ≥ 8 Weeks (%) 2015 05 05 05 05 05 05 05 05 05 05 05 05 05		3 23.3 15.5	LL-J21 45 - 40 - 35.1 35 - 30 - 23.1 8.6 8.6 8.6 8.6
E 3		O Level	Prior ESA Use and EPO Level

Santini, et al. Jnl Clin Oncol. 2016;34:2988-2996

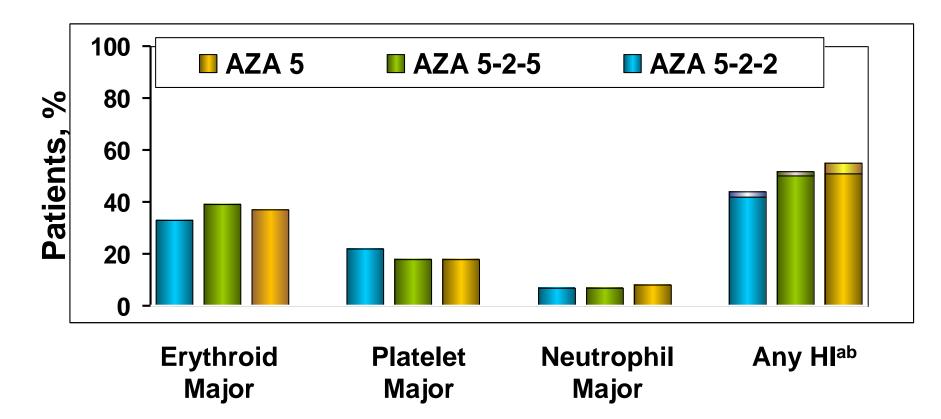
Summary: Lenalidomide Treatment in Low-/ Intermediate-1–Risk MDS

- MDS-004/005 confirmed results of MDS-003/002^[1,2]
 - Efficacy of 10 mg comparable between studies
 - Transfusion independence by IWG (61% vs 67%)
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Mean duration of TI: 106 wks
 - Greater proportion of cytogenetic responses vs 5 mg (41% vs 17%)
 - No significant differences in hematological toxicity
 - The rate of transformation to AML is comparable to the literature
- MDS-002/005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count^[3,4]
- Lenalidomide mechanism of action is karyotype dependent, suppressing the clone in del(5q) and promoting erythropoiesis in non-del(5q)^[5]

1. Fenaux P, et al. Blood. 2011;118:3765-3776. 2. List AF, et al. N Engl J Med. 2006;355:1456-1465. 3. List AF, et al. N Engl J Med. 2005;352:549-557. 4. Raza A, et al. Blood. 2008;111:86-93. 5. Sekeres MA, et al. J Clin Oncol. 2008;26:5943-5949.

Randomized Phase II Study of Alternative Azacitidine Dose Schedules

Study Design (N = 151) 5-2-2: 75 mg/m² (n = 50)Eligibility **x** 6 **12 Cycles** IWG All FAB AZA x 5 days 5-2-5: 50 mg/m² 2000 HI Cytopenia q4-6 wks ECOG PS: 0-3 (n = 51)5: 75 mg/m² (n = 50)

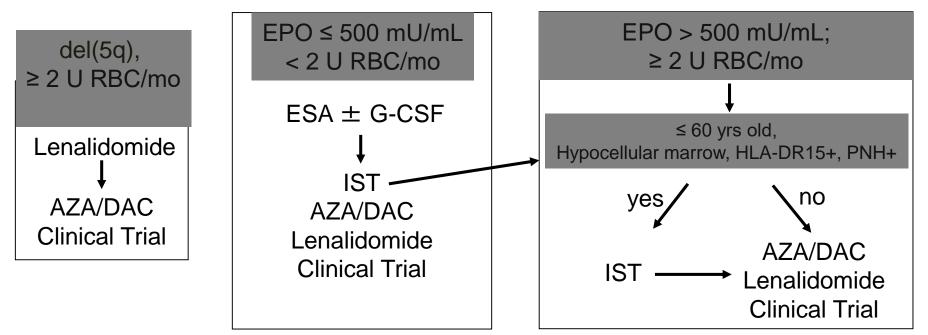

Lyons RM et al. J Clin Oncol. 2009;27:1850-1856.

Baseline Demographics/Disease Characteristics for All Randomized Patient (N = 151)

Characteristic	AZA 5-2-2 N = 50	AZA 5-2-5 N = 51	AZA 5 N = 50
Age, median (range)	73 (37-88)	76 (54-91)	76 (47-93)
Gender, % Male	56	73	66
RBC transfusion dependent, %	44	39	48
FAB, % RA	44	41	44
RARS	14	14	14
RAEB RAEB-T	28 2	33 2	28 4
CMMoL	12	10	10

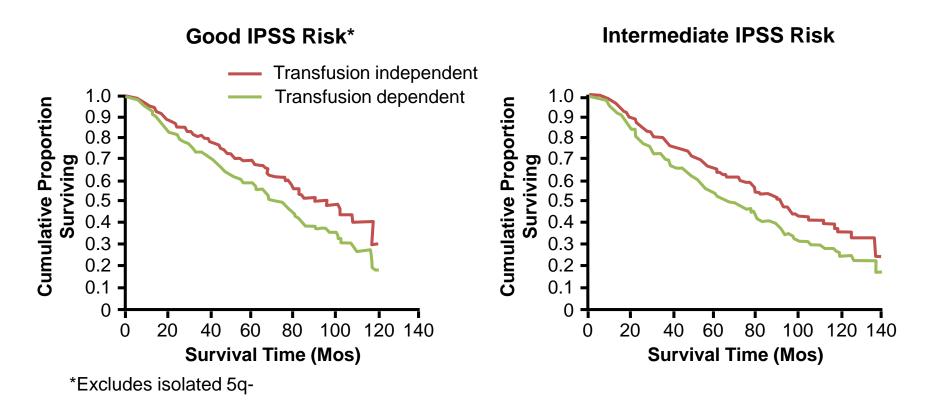
Lyons RM et al. J Clin Oncol. 2009;27:1850-1856.

Hematologic Improvement



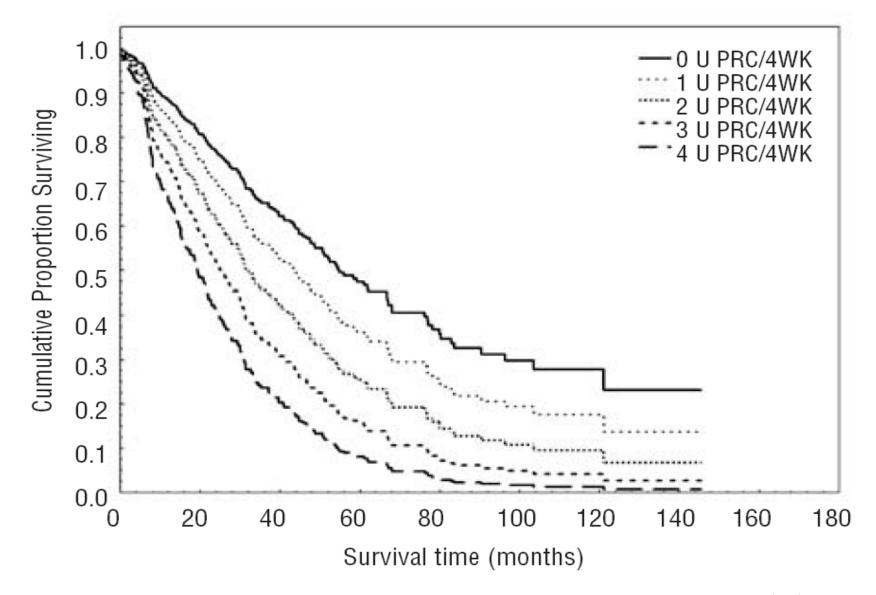
^a Patients counted only once for best response in an improvement category. ^b Minor improvement at top of HI columns.

Lyons RM et al. J Clin Oncol. 2009;27:1850-1856.


Anemia Management Algorithm Low- or Intermediate-1 Risk MDS

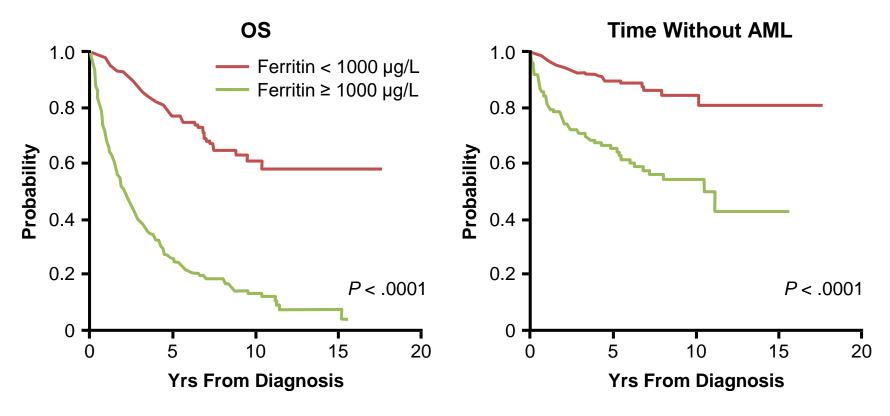
- Assess potential causes of anemia
- Supplement with iron, folate, vitamin B as needed
- RBC transfusion support for symptomatic patients

Adapted from NCCN. Clinical practice guidelines in oncology. MDS. v.2.2015.


Is Transfusion Dependency an Issue in MDS?

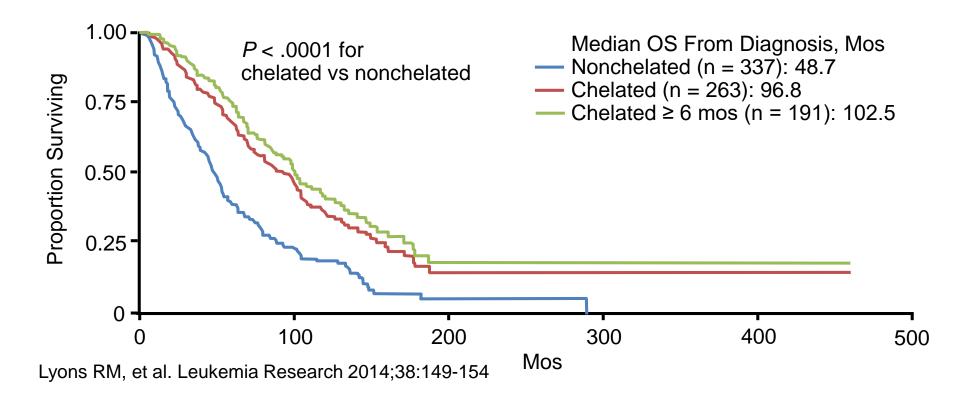
• Transfusion-dependent patients had a significantly shorter OS than transfusionindependent patients (HR: 2.16; *P* < .001 overall)

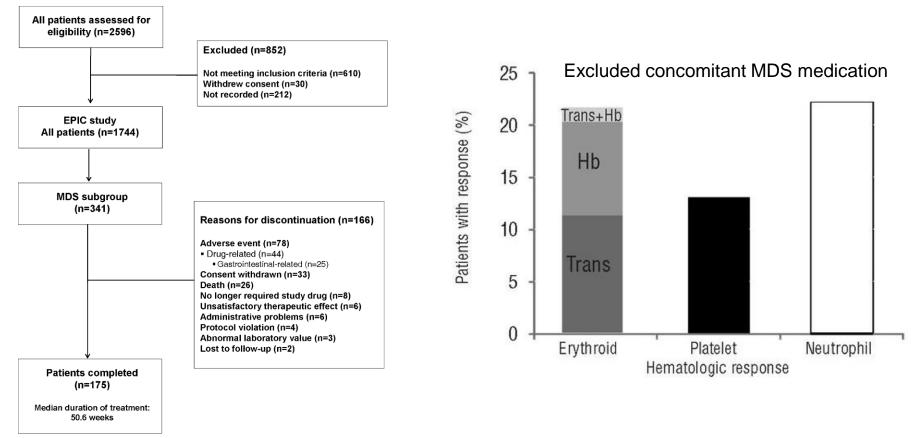
Malcovati L, et. al. J Clin Oncol. 2005;23:7594-7603.


Survival by Transfusion Burden

Malcovati L, et al. Haematologica 2006;91(12):1588-90

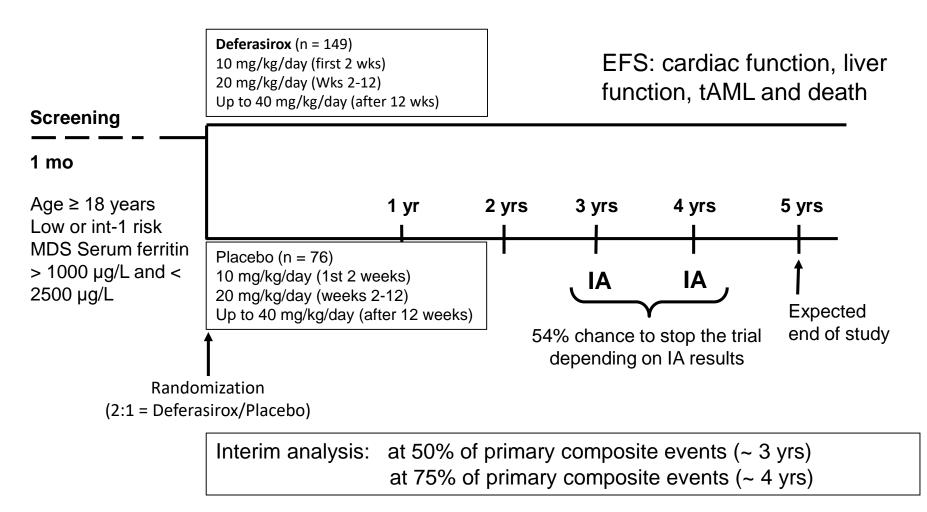
Serum Ferritin Is Predictive of Survival and Risk of AML in MDS


 Development of transfusional iron overload is a significant independent prognostic factor for overall survival and evolution to AML

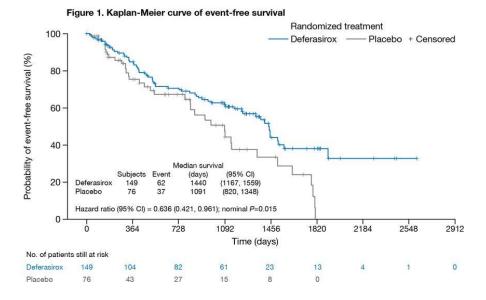

Sanz G, et al. 2008 ASH. Abstract 640.

Prospective Chelation Study in Lower-Risk MDS: 48-Mo Update—OS

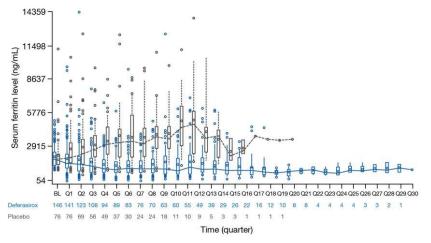
- 5-yr noninterventional registry study of 600 patients with lower-risk MDS and transfusional iron overload treated with or without chelation
- At 48 mos, chelated patients had significantly longer OS vs nonchelated


EPIC Trial

Prospective 1-year phase 2 trial with deferasirox Primary endpoint reduction in serum ferritin


Gatterman et al. Leuk Res. 2010;34(9):1143-1150 Gatterman et al. Haematologica 2012;97(9):1364-1371

TELESTO Phase 2 Study Design



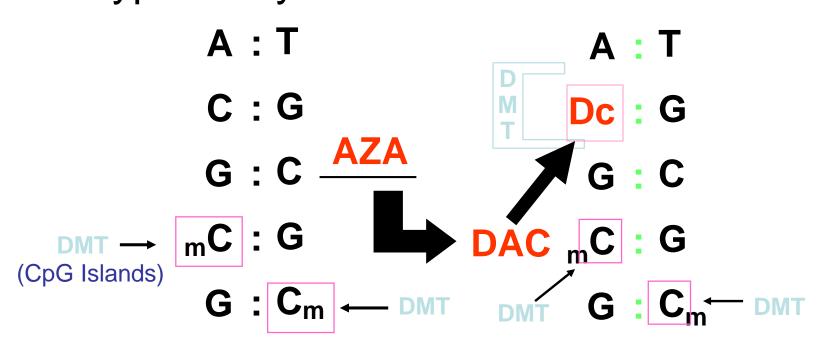
Angelucci et al. Blood 2018;132:234

TELESTO Results

Figure 2. Serum ferritin levels over time by treatment group

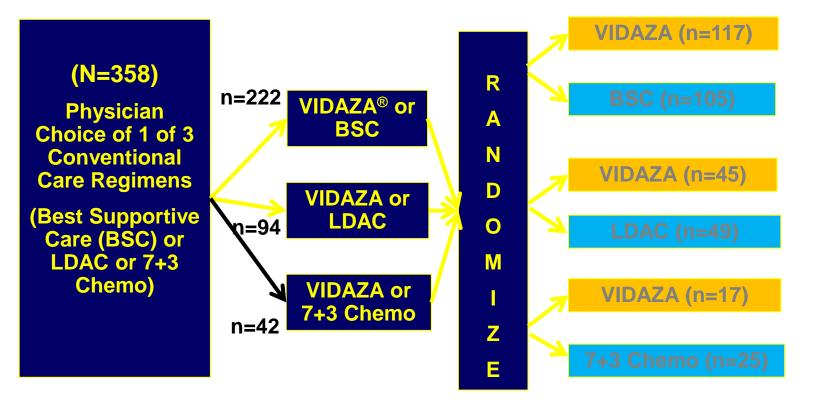
Whiskers mark 10th and 90th percentiles, boxes show lower and upper quartiles, horizontal line shows the median and o represents the mean, values outside 10th–90th percentile are plotted as o NE, not evaluable

MDS Patients Who Are Likely to Benefit Most From Management Iron Overload


Characteristic	NCCN ^[1]	MDS Foundation ^[2]
Transfusion status	 Received > 20 RBC transfusions Continuing transfusions 	 Transfusion dependent, requiring 2 units/mo for > 1 yr
Serum ferritin level	■ > 2500 µg/L	■ 1000 µg/L
MDS risk	 IPSS: low or intermediate- 1 risk 	 IPSS: Low- or Int-1 WHO: RA, RARS and 5q-
Patient profile	 Candidates for allografts 	 Life expectancy > 1 yr and no comorbidities that limit progress A need to preserve organ function Candidates for allografts

1. NCCN. Clinical practice guidelines in oncology. MDS. v2.2015. 2. Bennett JM. J Hematol. 2008;83:858-861.

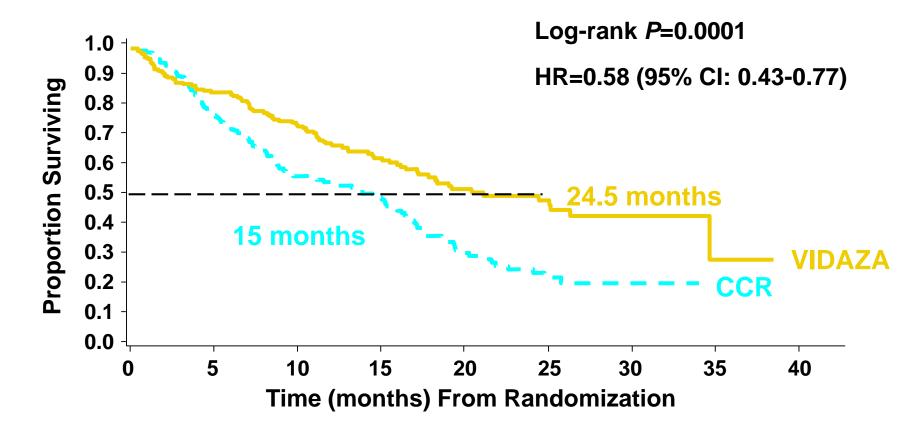
Treatment Options for Higher-risk MDS


- Azacitidine/Vidaza
- Decitabine/Dacogen
- Clinical Trial

Methyltransferase Inhibitor (MTI) Induces DNA Hypomethylation and Gene Activation

- Azacitidine (AZA) is incorporated into DNA in lieu of cytosine residue
- Inactivates DMT
- Leads to formation of newly synthesized DNA with unmethylated cytosine residues
- Results in hypomethylation and transcription of previously quiescent genes

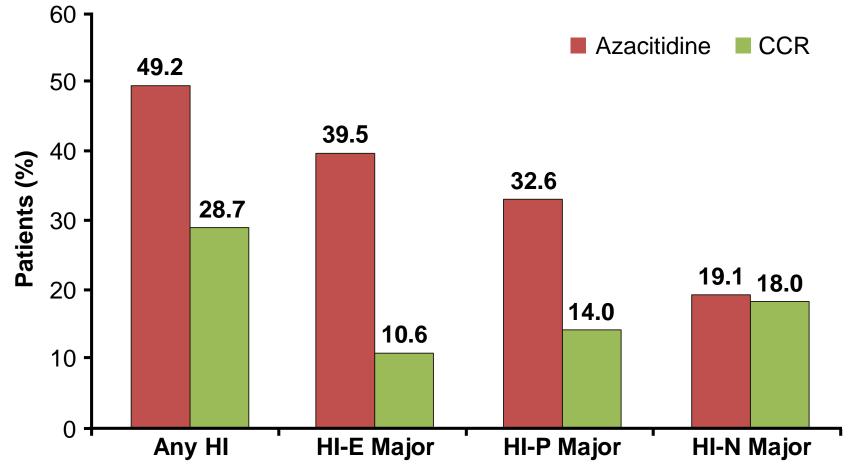
AZA-001 Randomization Schema


Fenaux et al. Lancet Oncol 2009;10:223-32

AZA-001 Trial: Baseline Clinical Characteristics*

			CCR Regimens N=179		
	VIDAZA [®] N=179	CCR N=179	BSC, Only N=105	LDAC N=49	7+3 Chemo N=25
Age					
Median (yrs)	69	70	70	71	65
≥65 (%)	68.1	76.0	77.1	85.7	52.0
FAB (%)					
RAEB	58.1	57.5	64.8	51.0	40.0
RAEB-T	34.1	34.6	28.6	38.8	52.0
CMMoL	3.4	2.8	3.8	2.0	0
IPSS (%)					
Int-1	2.8	7.3	8.6	4.1	8.0
Int-2	42.5	39.1	43.8	42.9	12.0
High	45.8	47.5	43.8	42.9	72.0
WHO (%)					
RAEB-1	7.8	9.5	12.4	6.1	4.0
RAEB-2	54.7	53.1	57.1	49.0	44.0
CMMoL-1	0.6	0	0	0	0
CMMoL-2	5.6	2.8	2.9	0	8.0
AML	30.7	32.4	25.7	40.8	44.0

*Numbers may not add up to 100%, some patient information unknown

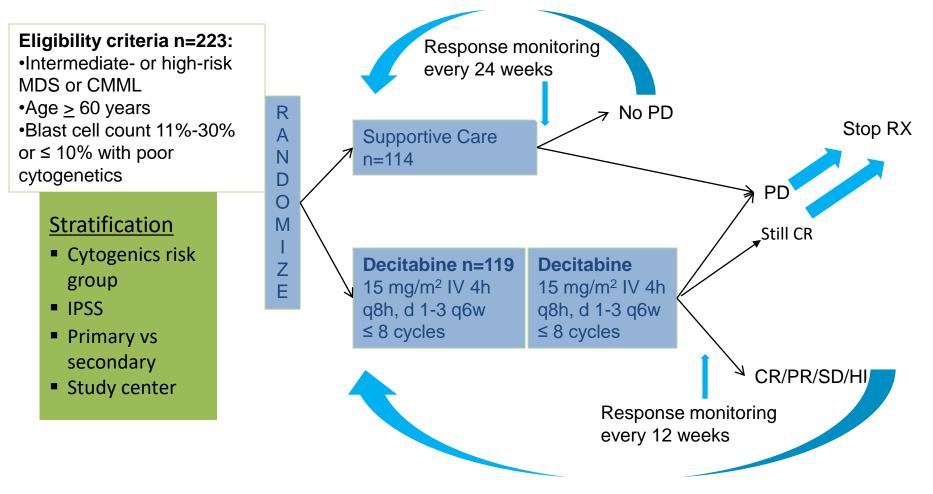

AZA-001 Trial: VIDAZA[®] Significantly Improves Overall Survival (OS)

Fenaux et al. Lancet Oncol 2009;10:223-32

Cl=confidence interval; HR=hazard ratio; ITT=intent-to-treat.

AZA-001: Hematologic Improvement (2000 IWG)

Fenaux P, et al. Lancet Oncol. 2009;10:223-232.

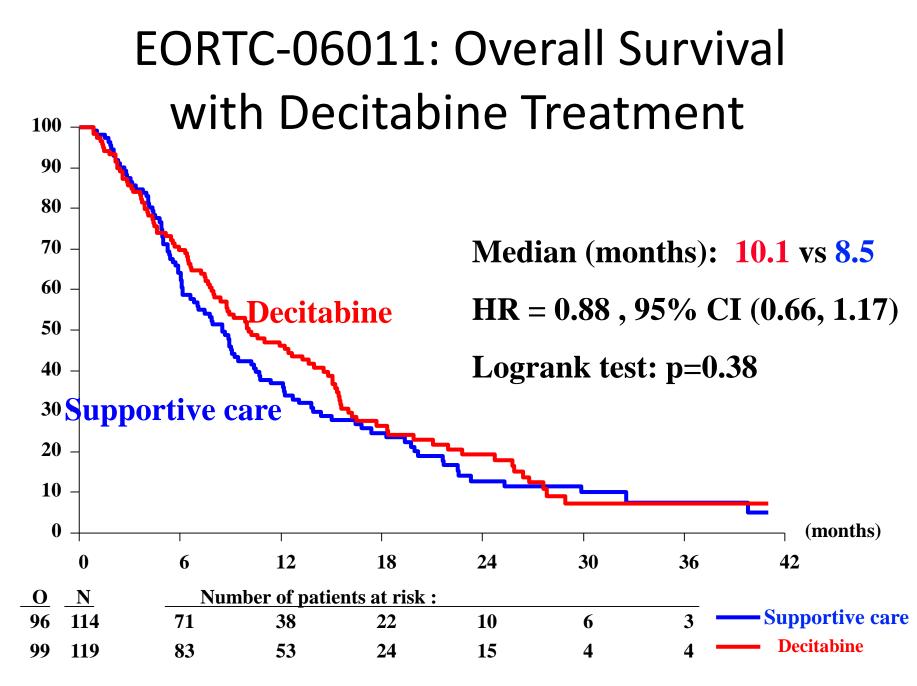

AZA-001: Grade 3/4 Adverse Events (≥ 2% of Patients)*

Adverse Events, n (%)	Azacitidine (n = 175)	BSC Only (n = 102)
Neutropenia	159 (91)	70 (69)
Thrombocytopenia	149 (85)	72 (71)
Leukopenia	26 (15)	1 (1)
Anemia	100 (57)	67 (66)
Febrile neutropenia	22 (13)	7 (7)
Pyrexia	8 (5)	1 (1)
Abdominal pain	7 (4)	0
Dyspnea	6 (3)	2 (2)
Fatigue	6 (3)	2 (2)
Hematuria	4 (2)	1 (1)
Hypertension	2 (1)	2 (2)

*When any grade of the reactions occurs in \geq 5% of azacitidine-treated patients.

Fenaux P, et al. Lancet Oncol. 2009;10:223-232.

Randomized Phase III Study of Low-Dose Decitabine for Patients With Higher-Risk MDS EORTC-06011

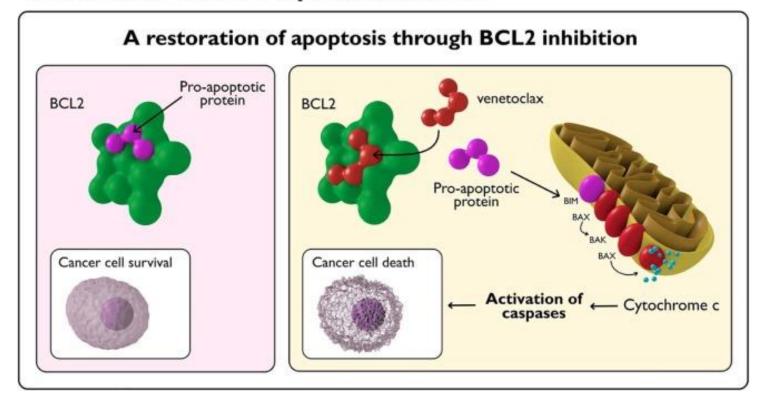


Lübbert M, et al. J Clin Oncol. 2011;29:1987-1996

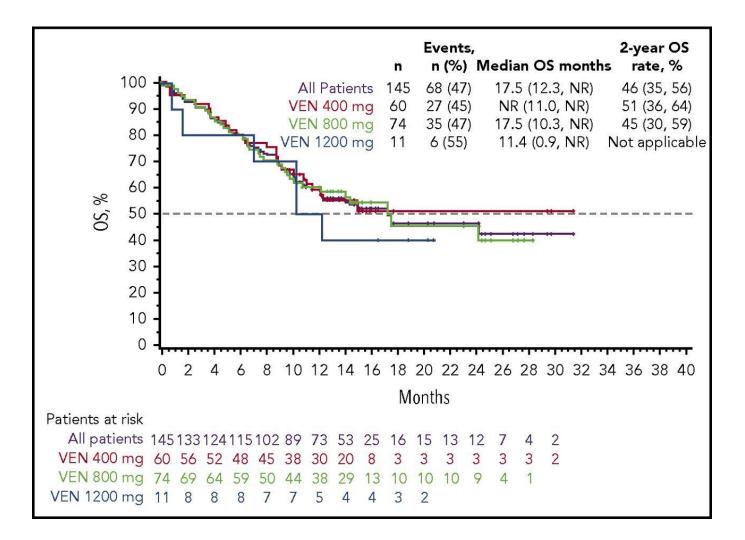
Reason for going off-protocol

	Supportive care N=114 (100%)	Decitabine N=119 (100%)
Normal completion	19 (16.7%)	31 (26.1%)
Progression of disease	55 (48.2%)	40 (33.6%)
Toxicity	NA	19 (16.0%)
Prolonged cytopenia	NA	5 (4.2%)
Death	17 (14.9%)	11 (9.2%)
Refusal	14 (12.3%)	6 (5.0%)
Protocol violations	5 (4.4%)	3 (2.5%)
Ineligible	1 (0.9%)	1 (0.8%)
Other	3 (2.6%)	3 (2.5%)
Median time to off-study: 112 days vs 180 days		

Lübbert M, et al. J Clin Oncol. 2011;29:1987-1996

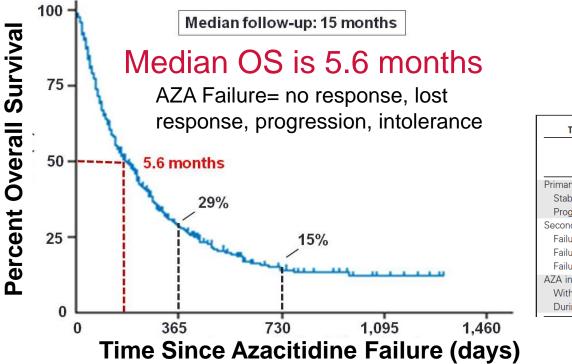

Lübbert M, et al. J Clin Oncol. 2011;29:1987-1996

No survival advantage for DAC?


- Number of treatments courses given
- Different populations and comparator groups
 - MDS duration
 - Cytogenetic risk groups
 - Performance status
- How the drug was given
- There is a true difference between aza and dac

Venetoclax

Venetoclax - a BCL2 specific inhibitor



Venetoclax + HMA

Clinical Trials

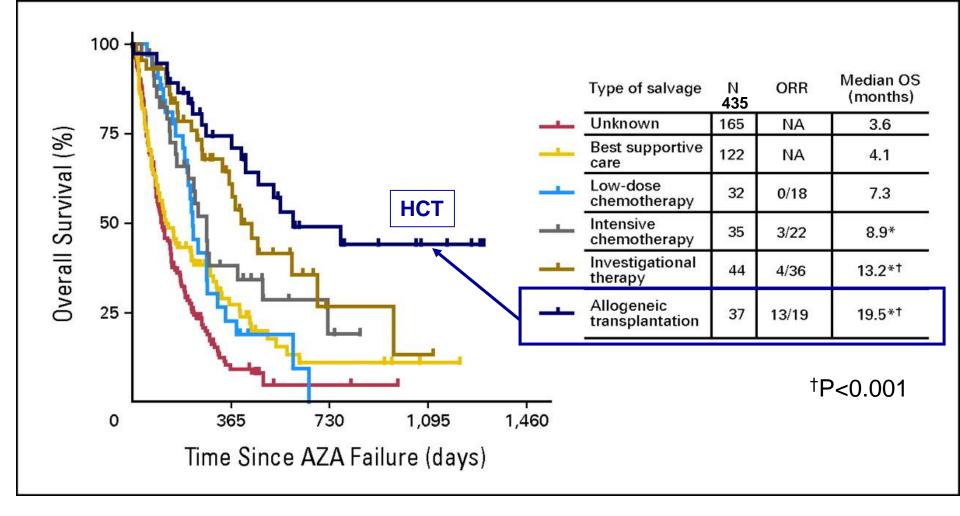
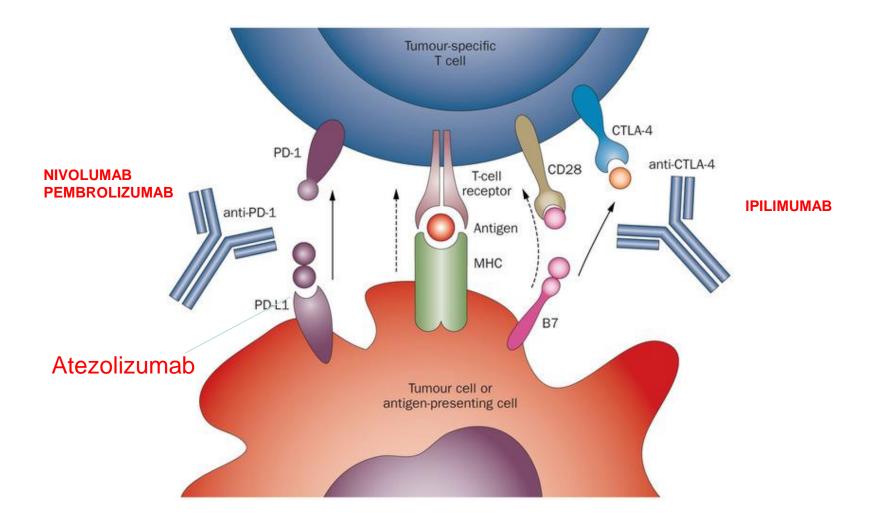
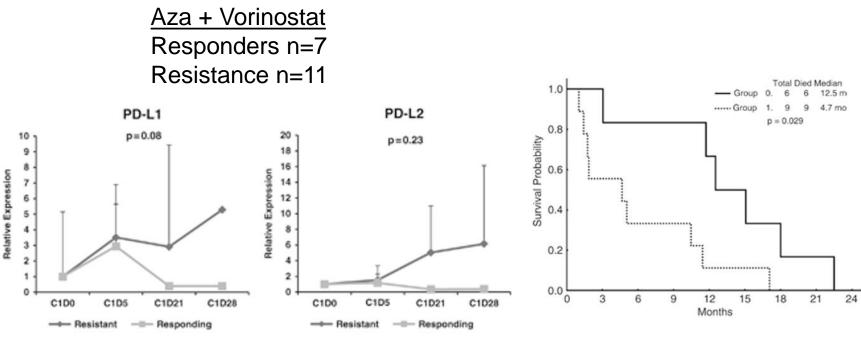

Overall Survival After AZA Failure (HR-MDS)

Table 2. Distribution of Patients According to the Type of Failure			
	Patients		
Disease Status N=435	No.	%	
Primary failure*	229	55	
Stable disease	91	24	
Progressive disease	138	31	
Secondary failure†	164	36	
Failure after CR	32	7	
Failure after PR	12	2	
Failure after HI	120	27	
AZA intolerance	42	9	
Without ongoing response	29	6	
During response to AZA	13	3	

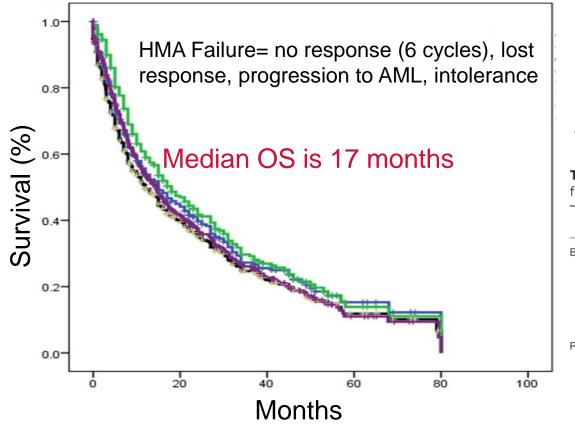

Prébet et al. J Clin Oncol 2011;29:3322-3327

HR MDS post AZA failure OS by Salvage Therapy



Prébet et al. J Clin Oncol 2011;29:3322-3327

ICPI


Increased PD-L1 Expression in HMA Failure

Group 0: no PDL-2 expression induction Group 1: PDL-2 expression induction

mRNA from PBMNC

OS and TFS After HMA Failure (LR-MDS)

	<u>n e</u>	Events	Months
OS *	290	204	17
TFS*	290	201	15
OS 🛛	438	315	15
TFS	438	318	12

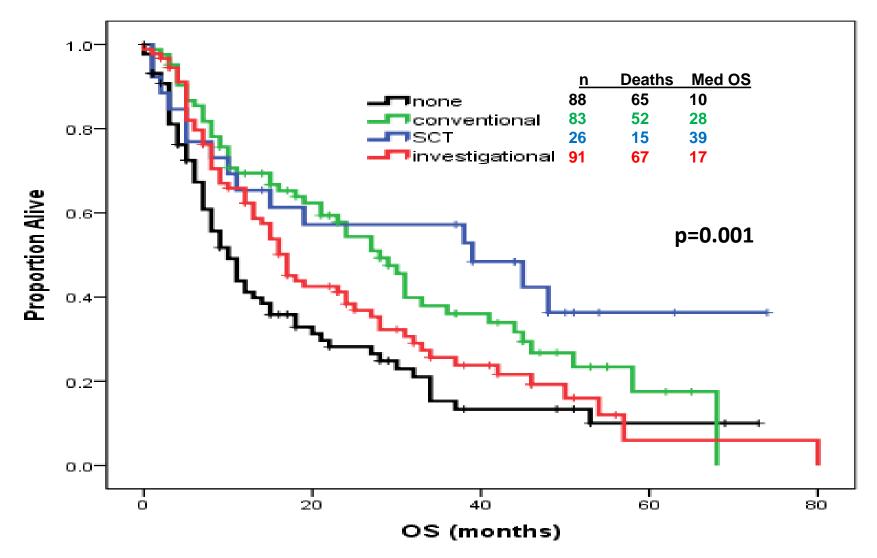
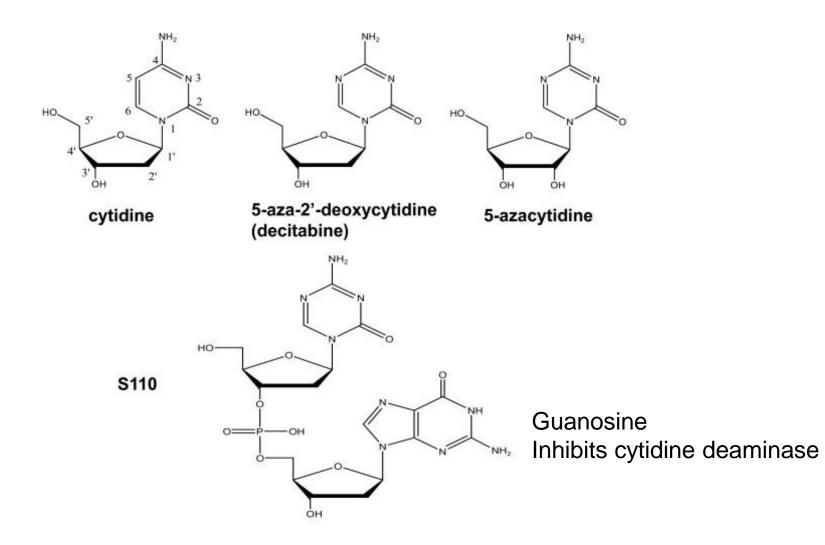

*Karyotype data available at time of failure

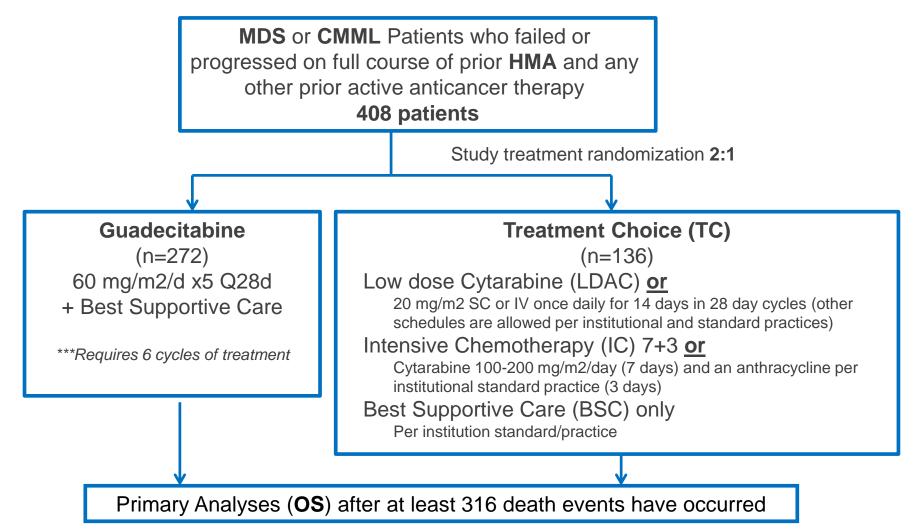
TABLE 2. Response to HMA Therapy and Reasons for Failure

	No. (%)
Best response	
Complete response	42 (10)
Partial response	19 (4)
Hematologic improvement	92 (21)
Stable disease	238 (54)
Progressive disease	36 (8)
Died while receiving therapy	11 (3)
Reason for stopping therapy	
Loss of response	133 (30)
Primary resistance	195 (45)
Transformation into AML	26 (6)
Side effects	13 (3)
Other	71 (16)


Jabbour et al, *Cancer* 2015;121:876-882.

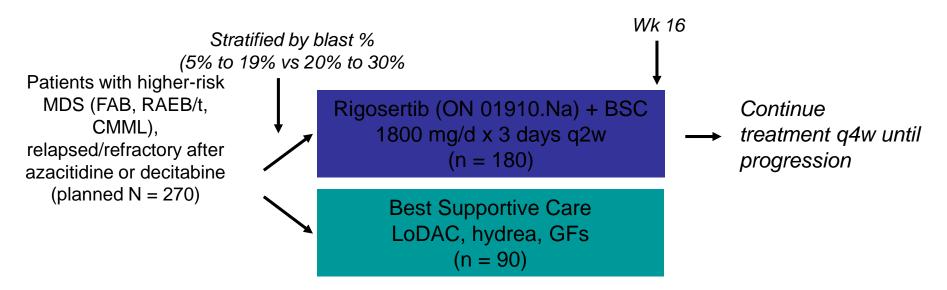
LR MDS post HMA Failure. OS by Salvage Therapy

Jabbour et al, Cancer 2015;121:876-882.


S110: Guadecitabine

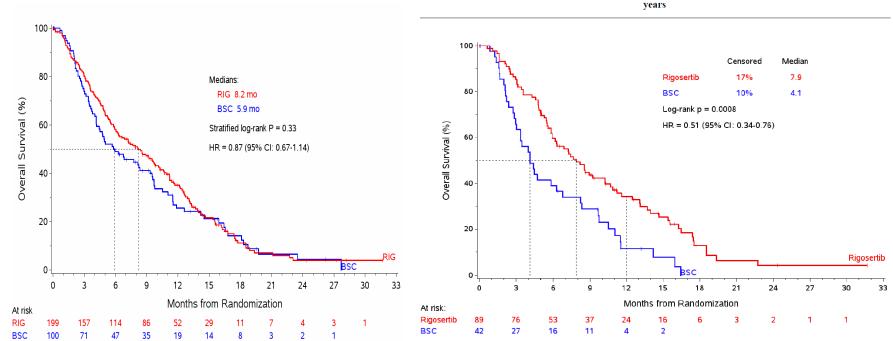
347:SG-110 in MDS/CMML/AML after AZA failure

- GDAC 60 mg/m²/day Day 1-5 q 28 days
 Median 3 cycles
- N=56; 15 refractory and 41 relapsed
- 9 responded (16%)
 - 1 CR, 2CRp, 5 marrow CR, 1 HI
- Median duration of response 9 months
- Median OS 6.7 mos
 - 33 died: 14 progression,13 infection, 1 bleeding, 5 other

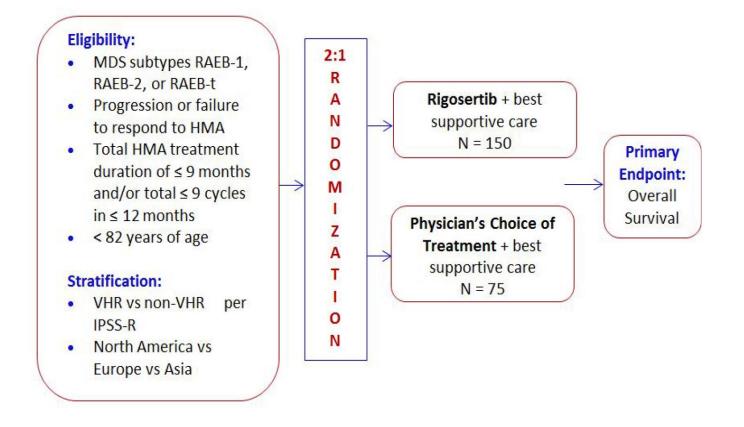

ASTRAL-2 Design

Note: All treatment options (guadecitabine and TC) may include BSC options

Phase III ONTIME: Rigosertib in Higher-Risk MDS After HMA Failure

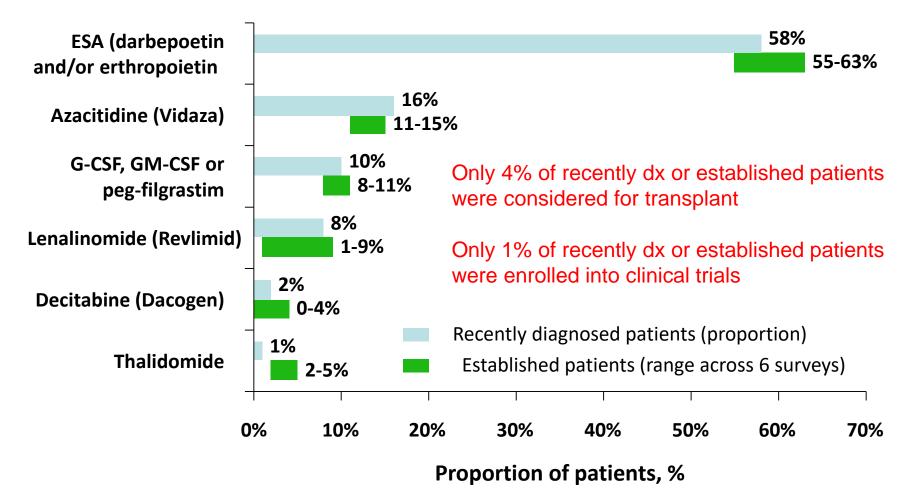

• Rigosertib: PLK and PI3K inhibitor; a novel synthetic benzyl styryl sulfone that is cytotoxic against a variety of human tumor cell lines

- Primary endpoint: OS (HR: 0.62)
- Secondary endpoints: IWG response, transformation to AML, infection, bleeding, QoL


Rigosertib vs. BSC

Overall Survival in Study 04-21 – Duration of Prior HMA Therapy ≤ 9 months and/or ≤ 9 Cycles of Prior HMA Therapy in ≤ 12 Months, Last Dose of HMA ≤ 6 months Before Study Entry, and Age at Entry < 82

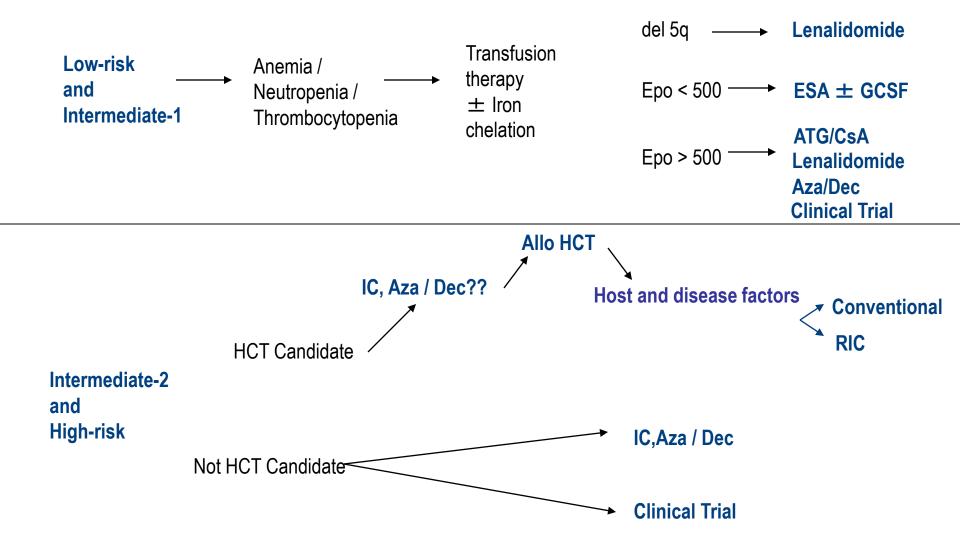
Subset analysis indicated improved responses with primary failure


ONTIME 2

Best supportive care = red blood cell and platelet transfusions, and growth factors (growth factors, granulocyte colonystimulating factor (G-CSF), erythropoietin, and thrombopoietin)

U.S. treatment approaches to MDS

Overall proportion of recently diagnosed patients (n = 670) and range of established patients across six surveys (n = 3844) taking specific types of therapies at the time of the survey



Sekeres, et al. J National Cancer Inst. 2008;100:1542.

Conclusions: Non-Transplant Therapy for MDS

- Transfusion support plus SC is an appropriate choice for some patients with MDS
- Growth factors remain the most common treatment choice for MDS
- IST is an appropriate choice for some patients with low/int-1 risk MDS
- Lenalidomide indicated for rec cell TD low/int-1 risk del (5q) MDS
- Aza has been shown to improve OS in patients with int-2/high risk MDS
- The role of iron-chelation remains controversial pending results of a RCT TELESTO

MDS Treatment Algorithm

