What is MDS? How Do We Determine Prognosis?

Bart Scott, M.D.
Associate Member, FHCRC
Associate Professor, UWMC

Synopsis

- What is MDS?
 - Bone marrow stem cell problem
 - Difficulties in Diagnosis
 - Pathogenesis
 - Epidemiology
- Classification and Prognosis
 - WHO classification
 - R-IPSS Prognosis
 - Cancer Genomics

Blood Stem Cells

megaloblastoid changes (arrows) and cytoplasmic changes (discontinous arrow) is poorly reproducible

Leonor Senent et al. Haematologica 2013;98:568-575

Granulated blast cells (arrows) makes the distinction between blast cells and promyelocytes (discontinous arrow) difficult

Bone Marrow Failure Syndromes

MDS Pathogenesis

Epling-Burnette PK, et al. Curr Opin Hematol. 2009;16:70-76.

MDS: Epidemiology

- 9,700 new cases/year in US (Adults)
- More common than AML
- Median survival 2-3 years
- Disease burden likely underestimated
- Predominantly a disease of the elderly
 - Median age > 70
 - Incidence males > females
 - Incidence ↑ with age

Rollison et al. Blood. 2008;112:45-52 Greenberg et al. Blood 1997; 89:2085-

Age-Related Incidence of MDS

Williamson PJ, et al. Br J Haematol. 1994 Aug;87(4):743-5.

Classification & Prognosis

WHO 2016 Classification of MDS

Name	Dysplastic lineages	Cytopenias*	Ring sideroblasts as % of marrow erythroid elements	BM and PB blasts	Cytogenetics by conventional karyotype analysis
MDS with single lineage dysplasia (MDS-SLD)	1	1 or 2	<15%/<5%†	BM $<$ 5%, PB $<$ 1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with multilineage dysplasia (MDS-MLD)	2 or 3	1-3	<15%/<5%†	BM $<$ 5%, PB $<$ 1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with ring sideroblasts (MDS-RS)					
MDS-RS with single lineage dysplasia (MDS-RS-SLD)	1	1 or 2	≥15%/≥5%†	BM $<$ 5%, PB $<$ 1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS-RS with multilineage dysplasia (MDS-RS-MLD)	2 or 3	1-3	≥15%/≥5%†	BM $<$ 5%, PB $<$ 1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with isolated del(5q)	1-3	1-2	None or any	BM <5%, PB <1%, no Auer rods	del(5q) alone or with 1 additional abnormality except -7 or del (7q)
MDS with excess blasts (MDS-EB)					
MDS-EB-1	0-3	1-3	None or any	BM 5%-9% or PB 2%-4%, no Auer rods	Any
MDS-EB-2	0-3	1-3	None or any	BM 10%-19% or PB 5%-19% or Auer rods	Any
MDS, unclassifiable (MDS-U)					
with 1% blood blasts	1-3	1-3	None or any	BM $<$ 5%, PB = 1%,‡ no Auer rods	Any
with single lineage dysplasia and pancytopenia	1	3	None or any	$\rm BM < \! 5\%, PB < \! 1\%, no Auer $	Any
based on defining cytogenetic abnormality	0	1-3	<15%§	$\rm BM < \! 5\%, PB < \! 1\%, no Auer $	MDS-defining abnormality
Refractory cytopenia of childhood	1-3	1-3	None	BM <5%, PB <2%	Any

^{*}Cytopenias defined as: hemoglobin, <10 g/dL; platelet count, <100 \times 10 9 /L; and absolute neutrophil count, <1.8 \times 10 9 /L. Rarely, MDS may present with mild anemia or thrombocytopenia above these levels. PB monocytes must be <1 \times 10 9 /L

[†]If SF3B1 mutation is present.

[‡]One percent PB blasts must be recorded on at least 2 separate occasions.

[§]Cases with ≥15% ring sideroblasts by definition have significant erythroid dysplasia, and are classified as MDS-RS-SLD.

MDS Diagnostic Criteria

WHO Criteria: MDS

Minimal Morphologic Criteria

- •≥10% of the cells in at least one lineage must show dysplasia
- •Dysplasia not required if defining cytogenetic abnml present, BM blasts ≥ 5%, PB blasts ≥ 2%, or Auer rods
- •At least one cytopenia* present
- Causes of secondary dysplasia must be excluded

Presumptive Diagnosis Unbalanced Balanced Other

```
-7 or del(7q) t(11;16)(q23;p13.3) Complex karyotype (≥ 3 abnormalities)

-5 or del(5q) t(3;21)(q26.2;q22.1)

i(17q) or t(17p) t(1;3)(p36.3;q21.1)

-13 or del(13q) t(2;11)(p21;q23)

del(11q) t(2;11)(p21;q23)

del(12p) or t(12p) inv(3)(q21q26.2)

del(9q) t(6;9)(p23;q34)

idic(X)(q13)
```

*Cytopenias defined as: hemoglobin, <10 g/dL; platelet count, <100 \times 10 9 /L; and absolute neutrophil count, <1.8 \times 10 9 /L. Rarely, MDS may present with mild anemia or thrombocytopenia above these levels. PB monocytes must be <1 \times 10 9 /L

^Hypothyroidism, Vit B 12 deficiency, Cu level, ETOH use

Cancer Genomics

Mutation discovery/Clonality Patient care

diagnosis

(unbiased comprehensive platform)

IPSS and Comprehensive Cytogenetic Scoring System

Classification /	Abnormalities					
Prognostic Group						
	Single	Double	Complex			
IPSS						
Good	Normal; -Y;	_	_			
	del(5q); del(20q)					
Intermediate	Other	Any	_			
Poor	7*	_	≥ 3 [†]			
5-Group						
Very good	-Y; del(11q)	_	_			
Good	Normal; del(5q);	Incl. del(5q)	_			
	del(20q); del(12p)					
Intermediate	del(7q); +8; i(17q);	Any other	_			
	+19; any other					
Poor	-7;	Incl7/ del(7q)	3^{\dagger}			
	Inv(3)/t(3q)/del(3q)					
Very poor	_	_	>3†			

^{*} Any chromosome 7 abnml † number of clonal abnml

Revised IPSS (IPSS-R)

points	0	0.5	1	1.5	2	3	4
blasts (%)	<2%	-	2-4%	-	5-10%	>10%	
Hemoglobin	>10 g/dl		8-10 g/dl	<8 g/dl			
ANC	>0.8 G/l	<0.8 G/l					
Platelet	>100	50-100	<50				
Cytogenetics	Very Good -Y del(11q)		Good Normal der(1;7) del(5q) del(20q) del(12p) Double incl del(5q)		Intermed -7/7q +8 Iso(17q) +19 +21 other double inclusions	Poor: der3q(21) der3q(26) Complex Double inclusion 7q/7	Very Poor Complex >3

4 categories

3 categories

2 categories

3 categories

5 categories 16 subgroups

Greenberg PL, et al. Blood. 2012;120:2454-2465

IPSS-R

Table 3. IPSS-R Prognostic Score Values

Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very Good		Good		Inter- mediate	Poor	Very Poor
BM Blast %	≤2		>2-<5%		5-10%	>10%	
Hemoglobin	≥10		8-<10	<8			
Platelets	≥100	50-	<50				
		<100					
ANC	≥0.8	<0.8					

Table 4. IPSS-R Prognostic Risk Categories/Scores

RISK GROUP	RISK SCORE		
Very Low	≤1.5		
Low	>1.5-3		
Intermediate	>3-4.5		
High	>4.5-6		
Very High	>6		

Greenberg PL, et al. Blood. 2012;120:2454-2465

Clonal evolution model

Survival by Mutational Abnormalities

439 MDS Patients

Bejar R et al. N Engl J Med 2011;364:2496-2506.

Bejar R et al. J Clin Oncol 2012;30:3376-3382

Spliceosome mutations in 85% of MDS

Frequency of gene mutations differ in MDS vs. AML

Clinical Presentation

Asymptomatic

- Symptoms related to low blood counts
 - Anemia (fatigue, SOB, DOE, angina, CHF)
 - Infection (principal cause of death)
 - Bleeding (petechiae, ecchymosis, epistaxis, hemorrhage)

Diagnostic Evaluation: Peripheral Blood

Diagnostic Study	Clinical Significance
CBC with Differential & Platelet Count,	Evaluate for cytopenias, peripheral blasts
Reticulocyte Count	
Serum Fe, TIBC, Ferritin, Folic Acid, B12	Evaluate for other possible causes of anemia
LDH, Haptoglobin, Reticulocyte Count, Coombs	Evaluate for possible underlying hemolysis
Serum Erythropoietin	Baseline to determine role for growth factor

NCCN Clinical Practice Guidelines in Oncology.TM Myelodysplastic Syndromes.V. 5, 2007.

Diagnostic Evaluation: Bone Marrow

Diagnostic Study	Clinical Significance
Aspirate	Evaluate for morphologic abnormalities. Used for flow, cytogenetics, FISH
Biopsy	Evaluate cellularity & presence of fibrosis
Cytogenetics	Evaluate for <i>non-random</i> chromosomal abnormalities. Examine 20 metaphases. > 2 = non-random event

NCCN Clinical Practice Guidelines in Oncology.TM Myelodysplastic Syndromes.V. 5, 2007.

Bone Marrow Findings

- Myelodysplastic Syndromes (MDS)
 - Usually hypercellular, although can be hypocellular
 - Dysplasia involving at least 10% of any single cell line
 - Characteristic cytogenetic findings
 - Excess Blasts (≥5%)
 - Ringed sideroblasts (RARS)
 - -CD 34 + cells > 0.5%

Figure 2. Hypocellular MDS may be confused with Aplastic Anemia

Maslak, P. ASH Image Bank 2004;2004:101115

Figure 1. A Prussian Blue histochemical stain of a bone marrow aspirate of a patient with myelodysplastic disorder, refractory anemia with ringed sideroblasts, is shown

Lazarchick, J. ASH Image Bank 2008;2008:8-00114

Figure 3. Ringed sideroblast, myelodysplastic syndromes (MDS), shown with a Prussian blue stain at low power

Fukumoto, J. et al. ASH Image Bank 2006;2006:6-00022

Figure 1. Dysplastic megakaryocytes

Figure 1. Dysplastic erythroid precursor has open chromatin and basophilic cytoplasm

Maslak, P. ASH Image Bank 2004;2004:101102

Figure 8. This figure summarizes the characteristic findings associated with MDS with an isolated del(5q) syndrome

Vardiman, J. W ASH Image Bank 2001;2001:100197

Pseudo Pelger-Huet cell

Conclusions

Myelodysplastic syndromes are difficult to diagnose

- Clinical and diagnostic studies are imprecise
- Many of bone marrow failure entities overlap

Cytogenetic and molecular testing is increasingly important