TREATMENT OF HIGH RISK MDS AND THE INDICATION FOR STEM CELL TRANSPLANT

Prapti Patel, MD
Assistant Professor of Internal Medicine
Division of Hematology Oncology
University of Texas Southwestern
11.9.19

Outline

- Definition of high risk MDS
- Hypomethylating agents
- Stem cell transplant
- Pre-transplant hypomethylating agents
- Post-transplant hypomethylating agents
- Clinical trials available at UTSW

What is High Risk MDS?

- Defined by R-IPSS
 - blast count
 - Number of cytopenias
 - Cytogenetic abnormalities
- What does it mean for the patient:
 - High risk of complications
 - High risk of transformation to acute leukemia

Refractory Anemia with Excess Blasts - 2.

Peter Maslak, ASH Image Bank 2011; 2011-2536

% BM Blasts and Risk of Transformation to AML

Cytogenetics Abnormalities in MDS

IPSS-R

Table 3. IPSS-R prognostic score values							
Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very good	_	Good	-	Intermediate	Poor	Very poor
BM blast, %	≤ 2	_	> 2%- < 5%	_	5%-10%	> 10%	_
Hemoglobin	≥ 10	_	8- < 10	< 8	_	_	_
Platelets	≥ 100	50-< 100	< 50	_	_	_	_
ANC	≥ 0.8	< 0.8	-	_	-	-	-

Table 4. IPSS-R prognostic risk category	ories/scores	- Manus da a d	V ala (/4.4 a.)
Risk category	Risk score	Very good	-Y, del(11q)
Very low	≤ 1.5	Good	Normal, del 20q, del 5q, del 12p
Low	> 1.5-3	Intermediate	+8, 7q-, 1(17q), +19, +21
Intermediate	> 3-4.5	Poor	-7, del3(3)q21/q26, complex (3
High	> 4.5-6		abnormalities)
Very high	> 6	■ Very poor	>3 abnormalities

IPSS-R

	No. of patients	Very low	Low	Intermediate	High	Very high
Patients, %	7012	19	38	20	13	10
Survival, all*		8.8	5.3	3.0	1.6	0.8
		(7.8-9.9)	(5.1-5.7)	(2.7-3.3)	(1.5-1.7)	(0.7-0.8)
Hazard ratio		0.5	1.0	2.0	3.2	8.0
(95% CI)		(0.46-0.59)	(0.93-1.1)	(1.8-2.1)	(2.9-3.5)	(7.2-8.8)
Patients, %	6485	19	37	20	13	11
AML/25%*†		NR	10.8	3.2	1.4	0.73
		(14.5-NR)	(9.2-NR)	(2.8-4.4)	(1.1-1.7)	(0.7-0.9)
Hazard ratio		0.5	1.0	3.0	6.2	12.7
(95% CI)		(0.4-0.6)	(0.9-1.2)	(2.7-3.5)	(5.4-7.2)	(10.6-15.2)

Therapy of MDS

Low Risk

- Goal: try to increase the function of the normal cells in the bone marrow
- Method: myeloid growth factors

High Risk

- Goal: killing neoplastic clone causing MDS and preventing transformation to AML
- Method:
 - Hypomethylating agents
 - Allogeneic stem cell transplant

High Risk MDS Treatment: Azacitdine

- Randomized phase III study of SQ Aza in all stages of MDS
 - BSC v Aza 75 mg/m2 D1-7 Q 28 days x 4 cycles

	BSC	AZA
# pts	92	99
CR	0 (0%)	7 (7%)
PR	0 (0%)	16 (16%)
Improved	5 (5%)	37 (37%)
Total	5 (5%)	60 (60%)
Time to AML	12 months	21 months

When using the IWG IPSS criteria, the response rate fell to 40-50%

Better treatments needed!

Azactadine Survival Study

- Randomized Phase III
 - AZA 75 mg/m2 z 7 days Q28D (n=179)

- Conventional Care (BSC, low dose AraC of 20 mg/m2/d \times 14d q 28-42 days,

standard induction chemo

- 2 y OS
 - 51 v 26%

Lancet Oncology. 2009; 10:223.

Figure 3: Overall survival

Purpose of Allo Transplant

- Clean, chemo-naïve stem cells
- Graft versus tumor effect
- More effective in treating aggressive malignancies that may not be cured by chemotherapy alone

Only 1 stem cell needed to repopulate entire bone marrow

Only 1 in 1 million leukemic blasts is stem cell, can result in sustained leukemia

Graft vs Tumor Effect

- Allogeneic grafts initiate immune reactions against host tissue based on the proteins that are on WBC (known as human leukocyte antigens, HLA)
- Severity of reaction depends on degree of incompatibility of the HLAs
- Mediated by T Cells
 - Recipient T cells can recognize donor T cells as foreign and reject graft
 - Donor T cells recognize recipient antigens as foreign/aberrant and cause GVHD/GVT

HLA typing

The Allogeneic Transplant Process

Processing

Bone marrow or periferal blood is taken. to the processing laboratory where the stem cells are. concentrated and prepared for the freezing process

Collection

Stem cells are collected from the patients bone marrow or blood.

Infusion

Thawed stem cells are infused into the patient.

Chemotherapy

High doise chemotherapy; and/or radiation therapy is given to the patient.

3 Cryopreservation

Bone marrow or blood is preserved by freezing. (cryopreservation) to keep stem cells alive until they are infused into the patient's bloodstream.

Peripheral Blood Collection

When to transplant?

- Recommendations by ASBMT consensus statement
 - Early transplant:
 - High risk patients
 - Low risk patients that are refractory to treatment
 - No recs on:
 - Induction chemo
 - Type of donor
 - Preparative regimen

Timing of Transplant and Survival (yrs)

	Immediate SCT	SCT in 2 yrs	SCT at PD
Low	6.51	6.86	7.21
Int-1	4.61	4.74	5.16
Int-2	4.93	3.21	2.84
High	3.20	2.75	2.75

- Downsides to this analysis:
 - Done before the age of HMAs (would treatment with an HMA change survival?)
 - Only included patients <60
 - Only included patients that received high dose chemotherapy, therefore more transplant related mortality

Treatment Options for Patients Who are Unfit for Allogeneic Stem Transplant

- Many are not candidates for allogeneic stem cell transplant
- Can't tolerate complications of transplant;: infection, GVHD, chemotherapy toxicity
 - Other medical problems
 - Age (>72 years)
- No treatment that is curative other than stem cell transplant.
 - New treatments on the horizon in the form of clinical trials

There is hope!!

Clinical Trials at UT Southwestern

- First Line treatments
 - Combination therapy with HMA and new medications
- Relapsed refractory treatments
 - Immunotherapies
 - Targeted therapies
- PRECISION MEDICINE in MDS
 - STOP MDS Trial
- Oral HMA!!

Summary

- High risk MDS is defined by low counts, high blasts, and lots of chromosome abnormalities
- Must be treated because there is a high risk of transformation to acute leukemia and complications from low counts
- Hematopoietic stem cell transplant is the only curative option
 - Timing is important
 - Can give post transplant HMA to help prevent relapse
- Lots of new therapeutic options are available