What is MDS? How do we predict prognosis?

Steve Chung
Division of Hematology/Oncology
Internal Medicine
November 9th, 2019
How Does MDS Happen?

- All blood cells come from HSCs
- HSCs are the only long lived cells in the blood system
- HSCs develop mistakes in DNA with age or exposure to toxins
- MDS happens when mistakes in DNA impair the function of HSCs
The Myelodysplastic Syndromes
Clinical Features

- Peripheral blood cytopenias
- Risk for progression to acute leukemia (AML)
- But...
 - Not all MDS cases will progress to AML
 - Not cytopenias are from MDS
 - Not all MDS cases are alike - it is “heterogenous”
The Myelodysplastic Syndromes - Key Features

- Clonal disorders
 - All starts with one abnormal cell (a clone)
- Impaired differentiation
 - Immature blood cells don’t grow up correctly
- Dysplasia
 - Maturing blood cells look abnormal
- Increased apoptosis
 - More cell death
The Myelodysplastic Syndromes - Key Features

- Blasts
 - Immature cells
 - Normal to have up to 3-5%
 - If these immature cells become >20%, we call it acute myeloid leukemia (AML)
 - Only ~1/3\(^{rd}\) of MDS progresses to AML
Diagnosis of the Myelodysplastic Syndromes

- Cytopenias
 - Hemoglobin <10 g/dL
 - Absolute Neutrophil Count <1.8 x 10^9/L
 - Platelets <100 x 10^9/L

- 1. Dysplasia in >10% of cells in at least one lineage
- 2. MDS-defining cytogenetic (chromosome) abnormalities
- 3. >5% blasts

MDS Defining Cytogenetic Abnormalities

<table>
<thead>
<tr>
<th>Unbalanced abnormalities</th>
<th>Balanced abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>−7 or del(7q)</td>
<td>t(11;16)(q23;p13.3)</td>
</tr>
<tr>
<td>−5 or del(5q)</td>
<td>t(3;21)(q26.2;q22.1)</td>
</tr>
<tr>
<td>i(17q) or t(17p)</td>
<td>t(1;3)(p36.3;q21.1)</td>
</tr>
<tr>
<td>−13 or del(13q)</td>
<td>t(2;11)(p21;q23)</td>
</tr>
<tr>
<td>del(11q)</td>
<td>inv(3)(q21q26.2)</td>
</tr>
<tr>
<td>del(12p) or t(12p)</td>
<td>t(6;9)(p23;q34)</td>
</tr>
<tr>
<td>del(9q)</td>
<td></td>
</tr>
<tr>
<td>idic(X)(q13)</td>
<td></td>
</tr>
</tbody>
</table>

Complex karyotype (3 or more chromosomal abnormalities) involving one or more of the above abnormalities.

Other Causes of Low Blood Counts or Dysplasia

- Medications
- Viral infections
- Autoimmune disorders
- Other blood disorders
 - (e.g. T-LGL, aplastic anemia)
- Vitamin/Nutritional deficiencies
 - B12, folate, copper
 - Zinc excess
- Toxins
 - Arsenic, chemotherapy, etc.
Milestones in MDS Classification and Prognostication

- **FAB**
 - Low grade: RA, RARS
 - High grade: CMML, RAEB, Int-1 risk, Int-2 risk, High risk

- **IPSS**
 - Low risk
 - Int-1 risk
 - Int-2 risk

- **IWG criteria**
 - Risk adapted Treatment goals

- **WHO**
 - Reclassified
 - CMML: MDS/MPN
 - RAEB-t: AML
 - RCMD vsRA
 - RAEB-1, -2

- **FDA approval**
 - Azacitidine
 - Lenalidomide
 - Decitabine

- **WHO revisions**
 - RCUD
 - Isolated del5q
 - Minimal cytogenetic criteria
 - MDS-SLN
 - MDS-RS
 - MDS-MLN
 - MDS Del5q
 - MDS-EB 1,2

- **Prognosis Refinement**
 - IPSS-R
 - Gene mutations

- **Timeline**
 - 1982
 - 1997
 - 2000
 - 2001
 - 2004-2005
 - 2008, 2016
 - 2011-12
French-American-British Classification

• RARS - abnormal accumulation of iron in red cell precursors, favorable subtype
• RAEB - more blasts (5-19%), higher risk
• RAEB-t (RAEB “in transformation”) - 20-30% blasts - very high risk

<table>
<thead>
<tr>
<th>FAB</th>
<th>Blast %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (refractory anemia)</td>
<td><5%</td>
</tr>
<tr>
<td>RARS (refractory anemia with ringed sideroblasts)</td>
<td><5% <5%</td>
</tr>
<tr>
<td>RAEB (refractory anemia with excess blasts)</td>
<td>5-9% 10-19%</td>
</tr>
<tr>
<td>RAEB-t</td>
<td>20-30%</td>
</tr>
</tbody>
</table>
FAB vs WHO 2000 Classification

<table>
<thead>
<tr>
<th>FAB</th>
<th>WHO</th>
<th>Dysplasia</th>
<th>Blast %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (refractory anemia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>5q- syndrome</td>
<td>erythroid+mega</td>
<td><5%</td>
</tr>
<tr>
<td>RCMD</td>
<td>RA</td>
<td>erythroid</td>
<td><5%</td>
</tr>
<tr>
<td>MDS-U</td>
<td>RCMD</td>
<td>erythroid+other</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>Non-erythroid</td>
<td>Non-erythroid</td>
<td><5%</td>
</tr>
<tr>
<td>RARS (refractory anemia with ringed sideroblasts)</td>
<td>RARS</td>
<td>erythroid only</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>RCMD-RS</td>
<td>erythroid+other</td>
<td><5%</td>
</tr>
<tr>
<td>RAEB (refractory anemia with excess blasts)</td>
<td>RAEB-1</td>
<td>≥1 lineage</td>
<td>5-9%</td>
</tr>
<tr>
<td></td>
<td>RAEB-2</td>
<td>≥1 lineage</td>
<td>10-19%</td>
</tr>
<tr>
<td>RAEB-t</td>
<td>AML</td>
<td>myeloid+other</td>
<td>20-30%</td>
</tr>
</tbody>
</table>

- **WHO 2000/2008**
 - 5q- syndrome - a very favorable risk subtype that responds to Revlimid
 - RCMD - multilineage dysplasia associated with somewhat higher risk
 - RAEB-t – very high risk - 20-30% blasts now just called AML
<table>
<thead>
<tr>
<th>2008 Name</th>
<th>Abbrev.</th>
<th>2016 Name</th>
<th>Abbrev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory cytopenia with unilineage dysplasia</td>
<td>RCUD (includes RA, RN and RT)</td>
<td>MDS with single lineage dysplasia</td>
<td>MDS-SLD</td>
</tr>
<tr>
<td>Refractory anemia with ring sideroblasts</td>
<td>RARS</td>
<td>MDS with ring sideroblasts*</td>
<td>MDS-RS</td>
</tr>
<tr>
<td>MDS with isolated del(5q)</td>
<td>Del(5q)</td>
<td>Unchanged^</td>
<td>Del(5q) MDS</td>
</tr>
<tr>
<td>Refractory cytopenia with multilineage dysplasia</td>
<td>RCMD</td>
<td>MDS with multilineage dysplasia</td>
<td>MDS-MLD</td>
</tr>
<tr>
<td></td>
<td>(with ring sideroblasts)</td>
<td></td>
<td>MDS-RS-MLD</td>
</tr>
<tr>
<td>Refractory anemia with excess blasts, type 1</td>
<td>RAEB-1</td>
<td>MDS with excess blasts, type 1</td>
<td>MDS-EB-1</td>
</tr>
<tr>
<td>Refractory anemia with excess blasts, type 2</td>
<td>RAEB-2</td>
<td>MDS with excess blasts, type 2</td>
<td>MDS-EB-2</td>
</tr>
<tr>
<td>MDS, Unclassifiable</td>
<td>MDS-U</td>
<td>unchanged</td>
<td>MDS-U</td>
</tr>
</tbody>
</table>

* >15% ring sideroblasts, or >5% AND presence of an SF3B1 mutation.

^ May include ≤ 2 cytopenias AND 1 additional chromosome abnormality other than -7/7q; with pancytopenia: MDS-U.

WHO 2016

- Instead of “refractory anemia,” decided to just call it MDS
- RCMD now called MDS-MLD, RAEB now called MDS-EB
- MDS-U- MDS-SLD or del(5q) MDS with pancytopenia or 1% circulating blasts- similar prognosis to MDS-MLD
Milestones in MDS Classification and Prognostication

- FAB
 - Low grade: RA, RARS
 - High grade: CMML, RAEB

- IPSS
 - Low risk
 - Int-1 risk
 - Int-2 risk
 - High risk

- IWG criteria
 - Risk adapted Treatment goals

- WHO
 - Reclassified
 - CMML: MDS/MPN
 - RAEB-t:AML
 - RCMD vsRA
 - RAEB-1, -2

- FDA approval
 - Azacitidine
 - Lenalidomide
 - Decitabine

- WHO revisions
 - RCUD
 - Isolated del5q
 - Minimal cytogenetic criteria
 - MDS-SLN
 - MDS-RS
 - MDS-MLN
 - MDS Del5q
 - MDS-EB 1,2

- Prognosis Refinement
 - IPSS-R
 - Gene mutations

Timeline:
- 1982
- 1997
- 2000
- 2001
- 2004-2005
- 2008, 2016
- 2011-12
1997 International Prognostic Scoring System

<table>
<thead>
<tr>
<th>Prognostic Variable</th>
<th>Score</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrow blasts (%)</td>
<td></td>
<td>< 5%</td>
<td>5%-10%</td>
<td>--</td>
<td>11%-20%</td>
<td>21%-30%</td>
</tr>
<tr>
<td>Karyotype class*</td>
<td></td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td># of cytopenias**</td>
<td></td>
<td>0 or 1</td>
<td>2 or 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* Karyotype class:
 - Good = normal, -Y, del(5q) alone, del(20q) alone;
 - Intermediate = other karyotypes;
 - Poor = chromosome 7 abnormalities or complex;

** Cytopenias: Hb < 10 g/dL, ANC < 1800/uL, platelets < 100,000/uL

Risk Groups

<table>
<thead>
<tr>
<th>IPSS</th>
<th>Low</th>
<th>Int-1</th>
<th>Int-2</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.5-1.0</td>
<td>1.5-2.0</td>
<td>2.5-3.5</td>
</tr>
</tbody>
</table>
OS and Freedom from AML by IPSS Score

Freedom from AML evolution

Overall Survival

*Estimated survival and risk of AML transformation.

IPSS-R (2012) - More cytogenetic groups and degree of cytopenias

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Included karyotypes (19 categories)</th>
<th>Median survival (mo)</th>
<th>Proportion of pts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>del(11q), -Y</td>
<td>60.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Good</td>
<td>Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p), der(1;7)</td>
<td>48.6</td>
<td>65.7</td>
</tr>
<tr>
<td>Intermediate</td>
<td>+8, del(7q), abnormal 17q, +19, +21, any other single or double abnormality not listed, 2 or more independent clones</td>
<td>26.1</td>
<td>19.2</td>
</tr>
<tr>
<td>Poor</td>
<td>der(3q), -7, double abnormality include -7/del(7q), complex with 3 abnormalities</td>
<td>15.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Very poor</td>
<td>Very complex with >3 abnormalities</td>
<td>5.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

VARIABLE

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>0 pts</th>
<th>0.5 pts</th>
<th>1 pt</th>
<th>1.5 pts</th>
<th>2 pts</th>
<th>3 pts</th>
<th>4 pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>V. Good</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>V. Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM Blast %</td>
<td>≤2</td>
<td>>2-<5%</td>
<td>5-10%</td>
<td>>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≥10</td>
<td>8-<10</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>≥100</td>
<td>50-<100</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC</td>
<td>≥0.8</td>
<td><0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPSS-R (2012)

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Points</th>
<th>% of Patients</th>
<th>Median survival, years</th>
<th>Time until 25% of patients develop AML, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>≤ 1.5</td>
<td>19 %</td>
<td>8.8</td>
<td>Not reached</td>
</tr>
<tr>
<td>Low</td>
<td>> 1.5 - 3</td>
<td>38 %</td>
<td>5.3</td>
<td>10.8</td>
</tr>
<tr>
<td>Intermediate</td>
<td>> 3 - 4.5</td>
<td>20 %</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>High</td>
<td>> 4.5 - 6</td>
<td>13 %</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Very High</td>
<td>> 6</td>
<td>10 %</td>
<td>0.8</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Treatment Approaches Largely Depend on Disease Risk

- **Lower Risk**- Transfusions, Erythropoeitin, Revlimid
 - MDS-SLD, MDS-MLD
 - MDS-U, MDS del (5q)
 - IPSS Low, Int-1; IPSS-R V. Low, Low

- **Higher Risk**- Vidaza, Dacogen, Transplant
 - MDS-EB (-1, -2)
 - IPSS Int-2, High; IPSS-R High, V. High
Gene Mutations are found in 80-90% of MDS Cases

Sequencing of 111 genes in 738 MDS Patients

Chromosomal Changes in ~50% of MDS

Papaemmanuil et al, Blood 2013
Identification of mutations shifts the IPSS in MDS

Sequencing of 18 genes in 439 MDS Patients

- Low risk, mutation absent (N=87)
- Low risk, mutation present (N=23), P<0.001
- Intermediate-1 risk (N=185)

IWG-PM MDS sample compilation (n=3562):
MDS survival affected by mutation number

Sequencing of 17 genes in 1996 MDS Patients

ASXL1
CBL
DNMT3
A ETV6
EZH2
IDH1
IDH2
JAK2
KRAS
NPM1
NRAS
RUNX1
SRSF2
TET2
TP53
U2AF1
SF3B1

Bejar R et al, ASH 2015 Abstract #907
SF3B1 Mutations in MDS

• Present in 20% of cases
• Associated with:
 • fewer cytopenias
 • longer survival
 • MDS-RS subtype

Papaemmanuil et al., NEJM 2011
Do Mutations Really Help With Prognostication?

ROC Curves Measure How Accurate a Test is

Mutation Data Actually Adds Little to “All Standard Variables”

- IPSS - % blasts, number of cytopenias, and chromosomes
- “All Standard Variables” - IPSS + degree of cytopenias, more extensive list of chromosomes, multilineage dysplasia, and demographics
- Why? Many poor-risk mutations are associated with poor-risk disease features, e.g. thrombocytopenia

Papaemmanuil et al, Blood 2013
Why Check Mutations at All?

- It can assist with diagnosis
- Some IPSS low risk cases with high risk mutations may require closer observation
- Some IPSS high risk cases may be so high risk that even transplant may not help
- Certain mutations may be targeted using novel therapies on clinical trials
 - IDH mutations
 - AG-221, AG-120
 - SRSF2/SF3B1/U2AF1/ZRSR2
 - H3B-8800
 - TP53 mutations
 - APR-246

TP53 Mutations Predict for Worse Survival After Transplant

Lindsley et al., NEJM 2018

Inhibition of IDH2 with AG-221
How Does MDS Happen?

- All blood cells come from HSCs
- HSCs are the only long lived cells in the blood system
- HSCs develop mistakes in DNA with age or exposure to toxins
- MDS happens when mistakes in DNA impair the function of HSCs
MDS HSCs are Resistant to Standard Therapies

del 5q Persists in HSCs Despite a Clinical Complete Cytogenetic Remission on Revlimid

Tehranchi et al, NEJM 2010;363:1025
Role for Bone Marrow Transplantation

- Remains the only curative therapy for MDS
- Risk may outweigh the benefit if:
 - disease is low risk
 - patient is frail/very elderly
 - disease is very high risk - transplant may not be effective
MDS and Normal HSCs Exhibit Unique Gene Expression Signatures

HSCs from Seven MDS Patients (pre-treatment or untreated) and Two Age-Matched Controls

MDS Compared with Aged Matched Normal HSCs

Gene Expression Signatures Associated with MDS HSCs

2,606 DEGs with FDR <0.01, FPKM>1
MDS is Heterogeneous

HSCs from Six MDS Patients (pre-treatment or untreated)

union of genes in top 10% of loadings on PC2, PC3, PC4
Discovery of Methods to Eradicate MDS HSCs

Genes Abnormally Expressed in MDS HSCs

25 predicted to encode cell surface proteins

CD99 is Highly Expressed in MDS HSCs
Discovery of Methods to Eradicate MDS HSCs

MSK MDS-001 (CD34+ cells)

IC50 - 8.38 µg/ml

Isotype
anti-CD99 mAb

No Ab
CD38: 77.1%
CD34: 20.7%

3.5 µg/ml
CD38: 84.8%
CD34: 13.9%

7 µg/ml
CD38: 95.7%
CD34: 4.35%

MDS HSCs
Summary and Key Points

• MDS is diagnosed by:
 • Low blood counts
 • Dysplasia in the bone marrow
 • +/- Characteristic chromosome abnormalities

• Prognosis in MDS is determined by:
 • % blast cells in the bone marrow
 • How many cytopenias you have and how severe they are
 • Chromosomal abnormalities and gene mutations

• Therapies for MDS are largely recommended based on disease risk

• Mutations may allow for participation in certain clinical trials

• Cure of MDS requires eradication of HSCs
Acknowledgements

UT Southwestern
Robert Collins
Sean Morrison
Carlos Arteaga
Suzanne Conzen
Prapti Patel
Yazan Madanat

The MDS Foundation
Chung Lab
Elaine Huang
Eda Gozel
Karin Mims
Nesli Kalkan

Funding Sources

Vera and Joseph Dresner Foundation
American Society of Hematology
NIH
National Cancer Institute
Cancer Prevention & Research Institute of Texas