What is MDS? How do we predict prognosis?

Steve Chung Division of Hematology/Oncology Internal Medicine November 9th, 2019

How Does MDS Happen?

- All blood cells come from HSCs
- HSCs are the only long lived cells in the blood system
- HSCs develop mistakes in DNA with age or exposure to toxins
- MDS happens when mistakes in DNA impair the function of HSCs

The Myelodysplastic Syndromes Clinical Features

- Peripheral blood cytopenias
- Risk for progression to acute leukemia (AML)
- But...
 - Not all MDS cases will progress to AML
 - Not cytopenias are from MDS
 - Not all MDS cases are alike- it is "heterogenous"

Fatigue, shortness of breath- Anemia

Infection- Leukopenia

Bleeding- Thrombocytopenia

The Myelodysplastic Syndromes- Key Features

- Clonal disorders
 - All starts with one abnormal cell (a clone)
- Impaired differentiation
 - Immature blood cells don't grow up correctly
- Dysplasia
 - Maturing blood cells look abnormal
- Increased apoptosis
 - More cell death

ASH Image Bank, 2004

The Myelodysplastic Syndromes- Key Features

- Blasts
 - Immature cells
 - Normal to have up to 3-5%
 - If these immature cells become >20%, we call it acute myeloid leukemia (AML)
 - Only ~1/3rd of MDS progresses to AML

Normal Bone Marrow

Leukemia Bone Marrow

ASH Image Bank, 2004

Diagnosis of the Myelodysplastic Syndromes

- Cytopenias
 - Hemoglobin <10 g/dL
 - Absolute Neutrophil Count <1.8 x 10⁹/L
 - Platelets <100 x 10⁹/L and
- 1. Dysplasia in >10% of cells in at least one lineage

or

• 2. MDS-defining cytogenetic (chromosome) abnormalities

or

• 3. >5% blasts

MDS Defining Cytogenetic Abnormalities

Unbalanced abnormalities	Balanced abnormalities
	t(11;16)(q23;p13.3)
-5 or del(5q)	t(3;21)(q26.2;q22.1)
i(17q) or t(17p)	t(1;3)(p36.3;q21.1)
-13 or del(13q)	t(2;11)(p21;q23)
del(11q)	inv(3)(q21q26.2)
del(12p) or t(12p)	t(6;9)(p23;q34)
del(9q)	
idic(X)(q13)	

Complex karyotype (3 or more chromosomal abnormalities) involving one or more of the above abnormalities.

Vardiman et al. Blood, 2009; Arber et al. Blood, 2016

Other Causes of Low Blood Counts or Dysplasia

- Medications
- Viral infections
- Autoimmune disorders
- Other blood disorders
 - (e.g. T-LGL, aplastic anemia)
- Vitamin/Nutritional deficiencies
 - B12, folate, copper
 - Zinc excess
- Toxins
 - Arsenic, chemotherapy, etc.

Milestones in MDS Classification and Prognostication

French-American-British Classification

- RARS- abnormal accumulation of iron in red cell precursors, favorable subtype
- RAEB- more blasts (5-19%), higher risk
- RAEB-t (RAEB "in transformation")- 20-30% blasts- very high risk

FAB	Blast %
RA (refractory anemia)	<5%
RARS (refractory anemia with ringed sideroblasts)	<5% <5%
RAEB (refractory anemia with excess blasts)	5-9% 10-19%
RAEB-t	20-30%

FAB vs WHO 2000 Classification

FAB	WHO	Dysplasia	Blast %
RA	■5q- syndrome	erythroid+mega	<5%
(refractory anemia)	•RA	erythroid	<5%
	RCMD	erythroid+other	<5%
	•MDS-U	Non-erythroid	<5%
RARS	RARS	erythroid only	<5%
(refractory anemia with ringed sideroblasts)	RCMD-RS	erythroid+other	<5%
RAEB	•RAEB-1	≥1 lineage	5-9%
(refractory anemia with excess blasts)	•RAEB-2	≥1 lineage	10-19%
RAEB-t	•AML	myeloid <u>+</u> other	20-30%

- WHO 2000/2008
 - 5q- syndrome- a very favorable risk subtype that responds to Revlimid
 - RCMD- multilineage dysplasia associated with somewhat higher risk
 - RAEB-t very high risk- 20-30% blasts now just called AML

2016 Revisions to WHO MDS Terminology

2008 Name	Abbrev.	2016 Name	Abbrev.
Refractory cytopenia with unilineage dysplasia	RCUD (includes RA, RN and RT)	MDS with single lineage dysplasia	MDS-SLD
Refractory anemia with ring sideroblasts	RARS	MDS with ring sideroblasts*	MDS-RS
MDS with isolated del(5q)	Del(5q)	Unchanged [^]	Del(5q) MDS
Refractory cytopenia with	RCMD	MDS with multilineage dysplasia	MDS-MLD
multilineage dysplasia		(with ring sideroblasts)	MDS-RS-MLD
Refractory anemia with excess blasts, type 1	RAEB-1	MDS with excess blasts, type 1	MDS-EB-1
Refractory anemia with excess blasts, type 2	RAEB-2	MDS with excess blasts, type 2	MDS-EB-2
MDS, Unclassifiable	MDS-U	unchanged	MDS-U

*>15% ring sideroblasts, or >5% AND presence of an SF3B1 mutation.

^ May include \leq 2 cytopenias AND 1 additional chromosome abnormality other than -7/7q; with pancytopenia: MDS-U.

- WHO 2016
 - Instead of "refractory anemia," decided to just call it MDS
 - RCMD now called MDS- MLD, RAEB now called MDS-EB
 - MDS-U- MDS-SLD or del(5q) MDS with pancytopenia or 1% circulating blastssimilar prognosis to MDS-MLD

Milestones in MDS Classification and Prognostication

1997 International Prognostic Scoring System

Prognostic	Score					
Variable	0	0.5	1.0	1.5	2.0	
Marrow blasts (%)	< 5%	5%-10%		11%-20%	21%-30%	
Karyotype class*	Good	Intermediate	Poor			
# of cytopenias**	0 0r 1	2 or 3				

* Karyotype class:

Good = normal, -Y, del(5q) alone, del(20q) alone;

Intermediate = other karyotypes;

Poor = chromosome 7 abnormalities or complex; ** Cytopenias: Hb < 10 g/dL, ANC < 1800/uL,

platelets < 100,000/UL

Risk Groups						
Low Int-1 Int-2 High						
IPSS	ο	0.5- 1.0	1.5- 2.0	2.5- 3.5		

Greenberg P et al. *Blood*. 1997;89:2079-2088.

OS and Freedom from AML by IPSS Score

Freedom from AML evolution

Overall Survival

*Estimated survival and risk of AML transformation.

Greenberg P, et al. BLOOD 1997: 89: 2079.

IPSS-R (2012)- More cytogenetic groups and degree of cytopenias

Risk group	Included karyotypes (19 categories)	Median survival (mo)	Proportion of pts (%)
Very good	del(11q), -Y	60.8	2.9
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p), der(1;7)	48.6	65.7
Intermediate	+8, del(7q), abnormal 17q, +19, +21, any other single or double abnormality not listed, 2 or more independent clones	26.1	19.2
Poor	der(3q), -7, double abnormality include - 7/del(7q), complex with 3 abnormalities	15.8	5.4
Very poor	Very complex with >3 abnormalities	5.9	6.8

VARIABLE	o pts	o.5 pts	1 pt	1.5 pts	2 pts	3 pts	4 pts
Cytogenetics	V. Good		Good		Intermediate	Poor	V. Poor
BM Blast %	≤2		>2-<5%		5-10%	>10%	
Hemoglobin	≥10		8-<10	<8			
Platelets	≥100	50-<100	<50				
ANC	≥0.8	<0.8					

Schanz J et al JCO 30:820-829, 2012; Greenberg et al. Blood 2012;120:2454-65.

IPSS-R (2012)

Risk group	Points	% of Patients	Median survival, years	Time until 25% of patients develop AML, years
Very low	≤1.5	19%	8.8	Not reached
Low	> 1.5 - 3	38 %	5.3	10.8
Intermediate	> 3 - 4.5	20 %	3.0	3.2
High	> 4.5 - 6	13 %	1.6	1.4
Very High	> 6	10 %	0.8	0.73
	Very low	Low Int	High Very high	

Schanz J et al JCO 30:820-829, 2012; Greenberg et al. Blood 2012;120:2454-65.

Treatment Approaches Largely Depend on Disease Risk

- Lower Risk- Transfusions, Erythropoeitin, Revlimid
 - MDS-SLD, MDS-MLD
 - MDS-U, MDS del (5q)
 - IPSS Low, Int-1; IPSS-R V. Low, Low
- Higher Risk- Vidaza, Dacogen, Transplant
- MDS-EB (-1, -2)

– IPSS Int-2, High; IPSS-R High, V. High

Chromosomal Changes in ~50% of MDS

Gene Mutations are found in 80-90% of MDS Cases

Greenberg P et al. Blood. 1997;89:2079-2088

Sequencing of 111 genes in 738 MDS Patients

Identification of mutations shifts the IPSS in MDS

Sequencing of 18 genes in 439 MDS Patients

Bejar R, et al. N Engl J Med. 2011;364(26):2496-2506.

IWG-PM MDS sample compilation (n=3562): **MDS** survival affected by mutation Sequencing of 17 genes in 1996 MDS Patients

Years Bejar R et al, ASH 2015 Abstract #907

SF3B1 Mutations in MDS

- Present in 20% of cases
- Associated with:
 - fewer cytopenias
 - longer survival
 - MDS-RS subtype

Papaemmanuil et al., NEJM 2011

Do Mutations Really Help With Prognostication?

- IPSS- % blasts, number of cytopenias, and chromosomes
- "All Standard Variables" IPSS + degree of cytopenias, more extensive list of chromosomes, multilineage dysplasia, and demographics
- Why? Many poor-risk mutations are associated with poor-risk disease features, e.g. thrombocytopenia Papaemmanuil et al, Blood 2013

Why Check Mutations at All?

- It can assist with diagnosis
- Some IPSS low risk cases with high risk mutations may require closer observation
- Some IPSS high risk cases may be so high risk that even transplant may not help
- Certain mutations may be targeted using novel therapies on clinical trials
 - IDH mutations
 - AG-221, AG-120
 - SRSF2/SF3B1/U2AF1/ZRSR
 2
 - H3B-8800
 - TP53 mutations
 - APR-246

AG-22

NADPH

NADPH

How Does MDS Happen?

- All blood cells come from HSCs
- HSCs are the only long lived cells in the blood system
- HSCs develop mistakes in DNA with age or exposure to toxins
- MDS happens when mistakes in DNA impair the function of HSCs

MDS HSCs are Resistant to Standard Therapies

del 5q Persists in HSCs Despite a Clinical Complete Cytogenetic Remission on Revlimid

Tehranchi et al, NEJM 2010;363:1025

Role for Bone Marrow Transplantation

- Remains the only curative therapy for MDS
- Risk may outweigh the benefit if:
 - disease is low risk
 - patient is frail/very elderly
 - disease is very high risktransplant may not be effective

MDS and Normal HSCs Exhibit Unique Gene Expression Signatures

HSCs from Seven MDS Patients (pre-treatment or untreated) and Two Age-Matched Controls

MDS is Heterogeneous

HSCs from Six MDS Patients (pre-treatment or untreated)

union of genes in top 10% of loadings on PC2, PC3, PC4

Discovery of Methods to Eradicate MDS HSCs

Genes Abnormally Expressed in MDS HSCs

CD99 is Highly Expressed in MDS HSCs

25 predicted to encode cell surface proteins

Discovery of Methods to Eradicate MDS HSCs

Summary and Key Points

- MDS is diagnosed by:
 - Low blood counts
 - Dysplasia in the bone marrow
 - +/- Characteristic chromosome abnormalities
- Prognosis in MDS is determined by:
 - % blast cells in the bone marrow
 - How many cytopenias you have and how severe they are
 - Chromosomal abnormalities and gene mutations
- Therapies for MDS are largely recommended based on disease risk
- Mutations may allow for participation in certain clinical trials
- Cure of MDS requires eradication of HSCs

Acknowledgements

UT Southwestern Robert Collins Sean Morrison Carlos Arteaga Suzanne Conzen Prapti Patel Yazan Madanat

The MDS Foundation

<u>Chung Lab</u> Elaine Huang Eda Gozel Karin Mims Nesli Kalkan

Funding Sources

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS