DISCLOSURE

- I have the following financial relationships:
 Contracted Research: Celgene
Ineffective Erythropoiesis in MDS

Eva Hellström Lindberg
Karolinska Institutet, Karolinska University Hospital
Stockholm, Sweden
MDS Foundation Symposium ASH 2019
• Which subtypes of MDS frequently show hyperplastic erythropoiesis?

• MDS with fibrosis
• 5q- syndrome
• MDS with ring sideroblasts
• CMML
Learning objectives

• The impact of anemia
• Erythropoiesis
• Mechanisms of anemia in MDS
• Modeling erythropoiesis in SF3B1 mutated MDS with ring sideroblasts
• Targeting ineffective erythropoiesis
Symptomatic anemia and chronic transfusion need

- 309 consecutive MDS and MDS-MPN patients
- 11,350 red cell and 1956 platelet units over 777 person-years of follow-up,
- Overall transfusion intensity of 14.6 and 2.5 units/person-year, respectively

Lower-risk MDS — RBC transfusions over time

EU MDS Registry data

QoL significantly impaired in anemic patients

ESA treatment before TD prolongs time to first transfusion

Erythropoiesis

Growth factors:
- SCF, IL-3, IL-6

Transcription Factors:
- GATA2
- GATA1

Receptors:
- CD34
- CD117
- CD45
- CD71
- CD36
- CD105
- CD235a and hemoglobin

Factors:
- HSC
- MEP
- BFU-E
- CFU-E
- PRO-EB
- BASO-EB
- POLY-EB
- ORTHO-EB
- RETIC
- RBC

Transcription:
- GATA2
- GATA1

Growth factors:
- EPO
- IRON

Factors:
- SCF, IL-3, IL-6
- EPO
- IRON

Transcription:
- GATA2
- GATA1
Bone marrow microenvironment
Erythroblastic islands

Young reticulocyte
Extruded nucleus
Enucleating erythroblast
Early erythroblast
Macrophage
Nuclear phagocytosis
Late erythroblast
Patterns of ineffective hematopoiesis in MDS

- Hyperplastic erythropoiesis
- Hyperplastic bone marrow
- Low BM blasts
- High BM blasts
- Hypoplastic bone marrow
- Cytogenetic aberrations
- Hypoplastic erythropoiesis

Ineffective hematopoiesis
Anemia and aberrant erythropoiesis
the most common feature in MDS

- Underrepresented erythropoiesis (few erythroblasts)
 - Hypoplastic MDS, low general cellularity,± immune-mediated cytopenia
 - As examplified by many germline conditions; DBA, GATA2 mut, etc
 - But also in immune-mediated aplastic anemia
 - Advanced MDS, increased blast percentage (MDS EB-2)
 - Mixed MDS-MPN, often maximal cellularity
 - MDS och MDS-MPD with fibrosis
 - 5q- syndrome, in particular in later stages

- Hyperplastic ineffective erythropoiesis
 - Normo / hyperplastic bone marrow with erythroid dysplasia / apoptosis
 - MDS-RS
 - Some forms of MDS-SLD and MLD, and MDS EB-1
 - Myelodysplastic syndrome with erythroid predominance
Low-risk MDS with isolated del(5q)

- Hyperplastic erythropoiesis
- Hyperplastic bone marrow
- Low BM blasts
- Hypoplastic bone marrow
- Normo/hypoplastic erythropoiesis
- High BM blasts
- Mutations
- Cytogenetic aberration del(5q)
The 5q- syndrome

- 3-4% of all MDS, female preponderance
- Hypolobated megakaryocytes, thrombocytosis
- Isolated deletion of 5q
 - involving 5q32-33
 - ~ 1.5Mb, 44 gene
 - Including RPS14, CSNK1A1, and miR-145
- Del(5q) alone causes macrocytic anemia
- No progression to higher-risk MDS / AML unless clonal evolution (mainly TP53, RUNX1, additional cytogenetic aberrations)

5q-syndrome: cellular and molecular characteristics

- Stem cell disorder
- Haploinsufficiency of RPS14 mediates erythroid apoptosis through p53 activation
- Haploinsufficiency of CSNK1A1 explains clonal dominance
- Combined haploinsufficiency of RPS14, CSNK1A1, and miR-145 recapitulate the clinical phenotype
- Lenalidomide (LEN) induce CR through inhibiting the 5q clone
- However, del(5q) HSC, megakaryocytes, and TP53 mut cells persist during LEN-induced CR

MDS with ring sideroblasts (MDS-RS)

- Hyperplastic erythropoiesis +RS
- Hyperplastic bone marrow
- Low BM blasts
- High BM blasts
- Hypoplastic bone marrow
- Hypoplastic erythropoiesis
- SF3B1 Mutation
- Cytogenetic aberrations

Björkman S, Blood 1956
- Hyperplastic erythropoiesis
- Ring sideroblasts (RS) in the bone marrow
- Severe anemia, transfusion dependency and low risk of transformation to AML
- $SF3B1$ mutations in >80% of patients

MDS-RS

- HSC
- MEP
- BFU-E
- CFU-E
- PRO-EB
- BASO-EB
- POLY-EB
- ORTHO-EB

Mitochondrial dysfunction in MDS erythroblasts

- Marked cytochrome c release
- Caspase-9 and 3 activation
- Erythroblasts express G-CCF R
- G-CSF inhibits cyt c release
Early Erythroblasts in RARS express an aberrant form of mitochondrial ferritin (MtF)

MtF$^+$ Cells (median)

- **RARS**
- **RA**
- **NBM**

Cazzola et al, Blood 2003, Tehranchi et al, Blood 2005
EPO+G-CSF act through unspecific but highly effective inhibition of erythroid apoptosis
- does not inhibit iron accumulation
- Increases release of aberrant RBC
Spliceasome mutations in MDS

Papaemmanuil, NEJM, 2011
Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts

Frequent pathway mutations of splicing machinery in myelodysplasia
Kenichi Yoshida*, Masashi Sanada*, Yuichi Shiraki*, Daniel Nowak*, Yasunobu Nagata*, Aiko Sato-Otsubo†, Ayana Koni†, Masao Nagasaki*, George Chalkidis*, Yutaka Suzuki†, Masashi Tomoyuki Yamaguchi†, Makoto Otsu†, Naoshi Ohara†, Mamiiko Sakata†-Yanagimoto†, Ken Ishii†, Florian Nolte*, Wolf-Karsten Hofmann*, Shoichiro Miyawaki*, Sumio Sugano†, Claudia Haerfler, Lee-Yung Shih*, Torsten Haerfler†, Shigeru Chiba†, Hiromitsu Nakauchi†, and Satoru Miyano*
The consequences of *SF3B1* mutations affects erythropoiesis during terminal maturation

ABC7

Papaemmanuil NEJM 2011, Conte, Br J Haematol, 2015,
The iron transporter *ABCB7* in RARS medates erythroid failure

Altered exon usage and nonsense-mediated decay

ABCB7 mutated in XLSA-T, these patients have RS in BM

CFU data

- ShRNA in normal BM induces a RARS phenotype
- Overexpression in RARS BM restores a normal phenotype phenotype

Nikpour M, Br J Haematol. 2010, Nikpour Leukemia 2013
SF3B1 mutations associated with lower-risk MDS with ring sideroblasts

Overall Survival

HR .35, P=.007

HR .32, P=.005

HR .26, P=.045

Malcovati, Blood, 2015
Experimental models of MDS-RS

- SF3B1 mutation conditional knock-in mice do not support RS formation
 - Murine orthologues of genes associated with RS in humans not mis-spliced
 - Poor conservation of splice sites between the species

- CD34+ suspension cultures do not mimic the mature MDS-RS phenotype
 - Proliferation of erythroblasts
 - Aberrant mitochondrial ferritin accumulation
 - Limited production of mature red blood cells or RS
What is the cell of origin in MDS-RS?

In Vitro
Long Term Co Cultures

| LTC-CFC | Functional assays | CFU |

In Vivo

| NSG | Engraftment and RS formation |
| 8 | 12 | 24 |

Targeted sequencing

Mortera Blanco, Blood, 2017
Recurrent *SF3B1* mutations are a part of the lymphoid lineage.
Only RARS HSC give rise to LTC-IC and engraft in NSG mice

<table>
<thead>
<tr>
<th>Patient n.</th>
<th>% of RS of total cells (NSG mice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>19.1</td>
</tr>
<tr>
<td>11</td>
<td>4.3</td>
</tr>
<tr>
<td>13</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Mortera Blanco, Blood, 2017
Modelling of terminal erythropoiesis *in vitro*

- Polyurethan foam, pore size of human bone marrow
- Coated with collagen type I
- Cut into scaffold cubes that could be aspirated and fixated

Mortera-Blanco et al. Biomaterials 2010 and 2011, Elvarsdottir, Leukemia 2019
3D culture facilitates expansion of CD34+ cells with self-renewal capacity.
CD34+ 3D facilitates erythropoiesis more effectively than MNC cultures

Elvarsdottir, Leukemia 2019
Erythroblastic islands detected after 4 weeks of MNC and CD34+ 3D cultures

Elvarsdottir, Leukemia 2019
Erythroblastic island inside fixed scaffold

Nucleus (Draq5)
Macrophage/monocyte (CD68)
Erythrocyte (CD235a)
Maintenance of SF3B1 VAF and RS formation
Scaffold cultures now used to study targeted drugs

Elvarsdottir, Leukemia 2019
New treatment options for MDS
TGF-β superfamily ligand traps

- Increased hemoglobin levels and RBC counts in
 - Post menopausal women
 - MDS murine model

- Phase 2/3 studies in MDS patients
 - Significantly increased hemoglobin and reduced transfusion burden
 - Greater response rate in MDS-RS patients

Cytokine measurements in extracted medium of scaffolds

<table>
<thead>
<tr>
<th>Category</th>
<th>Cytokines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative regulation of erythropoiesis</td>
<td>IFNγ, IL-13, IL-1α, IL-6, MIP-1α, TNFα</td>
</tr>
<tr>
<td>Promote erythropoiesis</td>
<td>G-CSF, GM-CSF, IL-10, IL17A</td>
</tr>
<tr>
<td>Elevated in serum of MDS patients</td>
<td>GDF11, TGF-β1, VEGF</td>
</tr>
<tr>
<td>Related to other hematological malignancies</td>
<td>TGF-α, IL-9, IL-8</td>
</tr>
<tr>
<td>Other</td>
<td>Flt-3L, MCP-3, MCP-1, MIP-1β, TNFβ</td>
</tr>
</tbody>
</table>

Graphs:
- **GDF11**: Peaks in NBM MNCs and MDS-RS MNCs.
- **VEGF**: Peaks in NBM MNCs and MDS-RS MNCs.
- **MCP-1**: Peaks in MNCs NBM and CD34+ NBM.

Note: PG/mL = picograms per milliliter.
Research question

Which cells mediate the response to ESAs and other therapeutic compounds in SF3B1 MDS with ring sideroblasts?
Experimental workflow

MDS-RS patients

At diagnosis

During response

At relapse

FACS sorting of HSPCs

ddPCR for SF3B1 mt VAF

Group 1
Normal donors
n = 5

Group 2
Untreated
(Stable anemia without treatment)

n = 7

Group 3
Responders to EPO
n = 5

Group 4
Non-responders to EPO
n = 5

CD34+ CD38+

CD34-PE/Red
CD90-PE
CD123-PECy7

HSC
MPP/LMPP
CMP
GMP
MEP

Experimental workflow

MDS-RS patients

At diagnosis

During response

At relapse

FACS sorting of HSPCs

ddPCR for SF3B1 mt VAF

Group 1
Normal donors
n = 5

Group 2
Untreated
(Stable anemia without treatment)

n = 7

Group 3
Responders to EPO
n = 5

Group 4
Non-responders to EPO
n = 5

CD34+ CD38+

CD34-PE/Red
CD90-PE
CD123-PECy7

HSC
MPP/LMPP
CMP
GMP
MEP

Isabel Hofman poster # 2993, Sunday
MDS-RS with stable anemia have lower VAF% in CD34+ BM cells.

VAF% in total BM

- Untreated
- Treated

VAF% in CD34+ BM cells

- Untreated
- Treated

VAF% of SF3B1 %

- Untreated
- Treated

Unpublished data

Isabel Hofman poster # 2993, Sunday
Concluding remarks

- Severe anemia has an immense impact on the quality of life of elderly MDS patients
- Lower-risk MDS patients are high-consumers of packed RBC
- The mechanism of ineffective erythropoiesis differs largely between MDS subtypes and is related to response to various treatments
- *SF3B1* mutations arise at the primitive lymphomyeloid stem cell stage and lead to terminal erythroid apoptosis
- New *in vitro* and *in vivo* models of erythropoiesis in MDS can help to dissect cellular and molecular disease mechanisms as well as the effects of pro-erythroid therapies
- A key research question is whether pro-erythroid treatment mainly affects mutated or wild-type bone marrow cells

Acknowledgements

Karolinska Institutet
Marios Dimitriou
Teresa Mortera Blanco
Magnus Tobiasson
Martin Jädersten
Isabel Hofman
Edda Elvarsdottir

MSKCC
Elli Papaemmanuil & team

University of Pavia
Mario Cazzola
Luca Malcovati

King’s, London
Ghulam Mufti

Hannover
Brigitte Schlegelberger
Gudrun Göring

Oxford
Jackie Boulwood
Andrea Pellagatti

EU MDS
Theo de Witte
Alex Smith, et al

Sten-Eirik Jacobsen
Petter Woll
Seishi Ogawa. Kyoto-KI

Cancerfonden
Radiumhemmets Forskningsfonder
Vetenskapsrådet
CME question

- Which subtypes of MDS frequently show hyperplastic erythropoiesis?

 - MDS with fibrosis
 - 5q- syndrome
 - MDS with ring sideroblasts
 - CMML