Genetics of MDS

Rafael Bejar MD, PhD

2nd Regional Symposium on MDS

Tel Aviv, Israel

March 5, 2020
Overview

- MDS as a Clonal Disorder
- Landscape of Somatic Mutations
- Relationship to Other Myeloid Conditions
- Pathogenic Mechanisms of Mutations
- Clinical Implications
- Update on Plans from the IWG-PM
Welcome

HOW TO PROPERLY GREET SOMEONE DURING THE CORONAVIRUS OUTBREAK
MDS as a Clonal Disease
Clonality Alone is Not a Disease
Corrupted Hematopoiesis

Differentiation

Transformation

Normal

Early MDS

Advanced MDS

Secondary AML
Clonal Selection

Genetic Abnormalities in MDS

<table>
<thead>
<tr>
<th>Translocations/Rearrangements</th>
<th>Rare in MDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(6;9)</td>
<td></td>
</tr>
<tr>
<td>i(17q)</td>
<td></td>
</tr>
<tr>
<td>t(1;7)</td>
<td></td>
</tr>
<tr>
<td>t(3;?)</td>
<td></td>
</tr>
<tr>
<td>t(11;?)</td>
<td></td>
</tr>
<tr>
<td>inv(3)</td>
<td></td>
</tr>
<tr>
<td>idic(X)(q13)</td>
<td></td>
</tr>
</tbody>
</table>

Observed Frequency in MDS
Somatic Mutations in MDS
Most Frequently Mutated Genes

Haferlach et al. Leukemia. 2014.

DDX41
CSNK1A1
ETNK1
NFE2
...

2020
Most Frequently Mutated Genes

Tyrosine Kinase Pathway
- JAK2
- KRAS
- BRAF
- FLT3
- NRAS
- CBL
- PTPN11

Transcription Factors
- RUNX1
- GATA2
- ETV6
- WT1
- PHF6

Others
- TP53
- STAG2
- SMC3
- RAD21
- DDX41
- GNAS
- GNB1
- BCOR/L1
- NPM1

Epigenetic Regulation
- IDH 1 & 2
- DNMT3A
- EZH2
- TET2
- ATRX
- ASXL1
- UTX
- SETBP1

Splicing Factors
- SF3B1
- U2AF1
- ZRSR2
- SF3A1
- SF1
- U2AF2
- PRPF40B
- PRPF8
- BCOR/L1
Myelodysplastic syndromes are diseases of the spliceosome and epigenetic regulation.

Bejar et al. NEJM. 2011;364:2496-506.
Bejar et al. JCO. 2012;30:3376-82.
Patterns of Mutation
Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D.,
Figure 1 Circos diagrams depict the relative frequency and associations of the major mutations in MPNs (a) and MDSs (b), respectively, based on data from our work [37] on 127 classic MPNs and from Dannm's study [38] on 211 MDSs. Wild-type means no disease allele has been detected in the genes listed.

Myeloproliferative Neoplasms

Table 1. WHO classification of myeloid neoplasms and acute leukemia

<table>
<thead>
<tr>
<th>WHO myeloid neoplasm and acute leukemia classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloproliferative neoplasms (MPN)</td>
</tr>
<tr>
<td>Chronic myeloid leukemia (CML), BCR-ABL1⁺</td>
</tr>
<tr>
<td>Chronic neutrophilic leukemia (CNL)</td>
</tr>
<tr>
<td>Polycythemia vera (PV)</td>
</tr>
<tr>
<td>Primary myelofibrosis (PMF)</td>
</tr>
<tr>
<td>PMF, prefibrotic/early stage</td>
</tr>
<tr>
<td>PMF, overt fibrotic stage</td>
</tr>
<tr>
<td>Essential thrombocythemia (ET)</td>
</tr>
<tr>
<td>Chronic eosinophilic leukemia, not otherwise specified (NOS)</td>
</tr>
<tr>
<td>MPN, unclassifiable</td>
</tr>
<tr>
<td>Mastocytosis</td>
</tr>
</tbody>
</table>

Mutation Patterns in MDS vs. AML

<table>
<thead>
<tr>
<th>MDS</th>
<th>AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET2</td>
<td>FLT3</td>
</tr>
<tr>
<td>SF3B1</td>
<td>NPM1</td>
</tr>
<tr>
<td>ASXL1</td>
<td>DNMT3A</td>
</tr>
<tr>
<td>SRSF2</td>
<td>NRAS</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>TET2</td>
</tr>
<tr>
<td>RUNX1</td>
<td>IDH2</td>
</tr>
<tr>
<td>U2AF1</td>
<td>CEBPA</td>
</tr>
<tr>
<td>ZRSR2</td>
<td>RUNX1</td>
</tr>
<tr>
<td>TP53</td>
<td>IDH1</td>
</tr>
<tr>
<td>EZH2</td>
<td>TP53</td>
</tr>
</tbody>
</table>

Haferlach et al. *Leukemia*. 2013
Mutation Comparisons

Malignancy Risk

No Clonal Disorder

No Clinical Disorder

ARCH

CHIP

CHIP/AA

CHIP/FP

CHIP/Tx

Conditions with Oncogenic Potential

Clonal Disease

CCUS

LR-MDS

HR-MDS

Advanced Malignancy

Mutation Number and Abundance

No Clonal Disorder

Normal

nciCUS

ARCH

CHIP

CHIP/AA

CHIP/FP

CHIP/Tx

DNMT3A

TET2

ASXL1

PPM1D

JAK2

TP53

VAF ~9-12%

1 mutation

VAF ~1-10%

1 mutation

VAF < 1%

DNMT3A

TET2

BCOR/L1

HLA locus

VAF ~2-15%

1-2 mutations

Younger

DNMT3A

TET2

ASXL1

RUNX1

TP53

VAF ~10-20%

1-2 mutations

Older

DNMT3A

PPM1D

TP53

TET2

ASXL1

VAF ~1-10%

1 mutation

DNMT3A

ASXL1

TET2

RUNX1

TP53

NRAS/JAK2/CBL

EZH2

STAG2

Abnormal karyo

VAF ~30-50%

~1-5+ mutations

EZH2

STAG2

ASXL1

VAF ~50%

>>1 mutation

Flt3

Npm1

Dnm3a

R882

t(#;#)

Idh1/2

Nras

Tet2

Cebpa

STAG2

VAF ~50%

>>1 mutation

PIGA

BCOR/L1

VAF ~2-15%

1-2 mutations

Younger

Splicing Factors

Tet2

ASXL1

DNMT3A

RUNX1

TP53

NRAS/JAK2/CBL

EZH2

STAG2

Abnormal karyo

VAF ~30-50%

~1-5+ mutations

Flt3

Npm1

Dnm3a

R882

t(#;#)

Idh1/2

Nras

Tet2

Cebpa

STAG2

VAF ~50%

>>1 mutation

Bejar R. Leukemia. 2017 Sep;31(9):1869-1871.

MOST COMMON COMMON FREQUENT
Pathogenic Mechanisms
Haploinsufficiency in 5q- Syndrome

5q-minus Syndrome: \textit{RPS14}

Splicing Factor Complexes

EXON
GU
U1 snRNP

UACUAAC
Branch Point Sequence

AG
ESE
EXON

5’ splice site

3’ splice site

Alternative Splicing Events

Skipped exon (SE)

Mutually exclusive exons (MXE)

Retained intron (RI)

 Constitutive exon
 Alternatively spliced exon

U2AF1
SRSF2
SF3B1

U2AF1
SRSF2
SF3B1
Stem vs. Progenitor Effects

Ring sideroblasts
- RARS, RARS-T (80+%)
- Better prognosis
- More anemia
- Higher MCV

Monocytosis
- CMML (40+%)
- Worse prognosis

Linked to del(20q)?
- Risk of AML transformation
- Maybe worse prognosis

SF3B1

SRSF2

U2AF1
Ring Sideroblasts and SF3B1 Mutation

2016 WHO Guidelines

MDS-RS

≥ 15% ring sideroblasts

5-14% ring sideroblasts

ICUS

+ SF3B1 mutation

Prognostic Interactions Between Mutated Genes

SF3B1 mutant MDS patients have fewer mutations in genes associated with greater disease risk.

(highlighted in red)
Epigenetic Regulators in MDS

DNA Methylation
- Methylation of CpG dinucleotides
- Heritable non-coding change
- Associated with gene silencing

Histone Modifications
- Many types of modifications:
 - methylation - acetylation - phosphorylation – SUMOlation - citrullination - ribosylation
- Linked to different chromatic states
- Can be associated with gene silencing, priming or expression
Epigenetic Regulators in MDS

Writing
- Acetylases, methylases, phosphorylases

Erasing
- Deacetylases, demethylases, phosphatases

Reading
- Bromodomain, chromodomain, PHD finger, WD40 repeat
DNMT3A and TET2 Mutations in MDS

DNMT3A

TET2

Cytosine

5-methylcytosine

5-hydroxymethylcytosine

5-carboxylcytosine

5-formylcytosine

IDH1 and **IDH2** Mutations in MDS

- Mutated rarely in MDS and more often in AML
- Mutually exclusive with mutations of **TET2** and each other
- Mutations cause a *gain* of function - that drugs can target!

Chemical Reactions

- Isocitrate + NADP⁺ → 2-hydroxyglutarate + NADPH
- 2-hydroxyglutarate is converted to α-ketoglutarate by IDH enzymes.

Molecular Mechanisms

- IDH1 and IDH2 mutations lead to a gain of function.
- These enzymes are involved in the conversion of isocitrate to α-ketoglutarate, a key step in the Krebs cycle.
- Mutations in these IDH enzymes can lead to the accumulation of 2-hydroxyglutarate, which can affect cellular metabolism and contribute to the development of cancer.

References

Transcription Factors and Others

RUNX1

Master regulators of differentiation

ETV6

Master regulator of stress/damage response

GATA2

TP53

Regulator of innate immune signaling?

DDX41
Clinical Implications
Analysis of Combined Datasets from the International Working Group for MDS-Molecular Prognosis Committee

Detlef Haase, MD
Kristen E. Stevenson, MS
Donna Neuberg, ScD
Jaroslaw P. Maciejewski, MD, PhD
Aziz Nazha, MD
Mikkael A. Sekeres, MD, MS
Benjamin L. Ebert, MD PhD
Guillermo Garcia-Manero, MD
Claudia Haferlach, MD
Torsten Haferlach, MD
Wolfgang Kern, MD
Seishi Ogawa, MD, PhD
Yasunobu Nagata, MD, PhD
Kenichi Yoshida, MD, PhD
Timothy A. Graubert, MD
Matthew J. Walter, MD
Alan F. List, MD
Rami S. Komrokji, MD
Eric Padron, MD
David Sallman, MD

Elli Papaemmanuil, PhD
Peter J. Campbell, PhD
Michael R. Savona, MD
Adam Seegmiller, MD, PhD
Lionel Adès, MD, PhD
Pierre Fenaux, MD, PhD
Lee-Yung Shih, MD
David Bowen, MD, PhD
Michael J. Groves, PhD
Sudhir Tauro, PhD
Michaela Fontenay, MD, PhD
Olivier Kosmider, PharmD, PhD
Michal Bar-Natan, MD
David P. Steensma, MD
Richard M. Stone, MD
Michael Heuser, MD
Felicitas Thol, MD
Mario Cazzola, MD
Luca Malcovati, MD
Aly Karsan, MD

Christina Ganster, PhD
Eva Hellström-Lindberg, MD, PhD
Jacqueline Boultwood, PhD
Andrea Pellagatti, PhD
Valeria Santini, MD
Lynn Quek
Paresh Vyas, MD
Heinz Tüchler
Peter L. Greenberg, MD
Rafael Bejar, MD, PhD

On behalf of the IWG for MDS investigators
MDS sample data collected from 19 centers in Europe, the United States, and Asia

Data Summary

Clinical Features
- age and sex
- blast %
- karyotype
- hemoglobin
- platelet count
- neutrophil count

Overall Survival Data:
- available for 3359
- 3.6 years follow-up
- 1780 deaths
- median OS 2.65 years

Treatment Status

Gene Mutations
Overall Survival by Mutation Number

17 genes sequenced in 1996 patients with OS data

- **ASXL1**
- **CBL**
- **DNMT3A**
- **ETV6**
- **EZH2**
- **IDH1**
- **IDH2**
- **JAK2**
- **KRAS**
- **NPM1**
- **NRAS**
- **RUNX1**
- **SRSF2**
- **TET2**
- **TP53**
- **U2AF1**
- **SF3B1**

From the IWG-PM Collaborative Meta-analysis
MDS sample data collected from 19 centers in Europe, the United States, and Asia

Data Collected

- Karyotype parsed for:
 - # of abnormalities
 - del(5q)
 - del(7q), -7
 - abnormal chr 17, 3q, 9, ...
 - monosomal status

- Clinical Features:
 - age and sex
 - blast %
 - hemoglobin
 - platelet count
 - neutrophil count

TP53 Mutation Status

Overall Survival

TP53 Co-mutation in MDS

Mutation Frequency by TP53 Mutation Status

<table>
<thead>
<tr>
<th>Gene</th>
<th>No TP53 Mutation</th>
<th>TP53 Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>186</td>
<td>153</td>
</tr>
<tr>
<td>ASXL1</td>
<td>8 (4%)</td>
<td>21 (14%)</td>
</tr>
<tr>
<td>RUNX1</td>
<td>1 (1%)</td>
<td>13 (8%)</td>
</tr>
<tr>
<td>U2AF1</td>
<td>5 (3%)</td>
<td>14 (9%)</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>17 (9%)</td>
<td>13 (8%)</td>
</tr>
<tr>
<td>TET2</td>
<td>19 (10%)</td>
<td>8 (5%)</td>
</tr>
<tr>
<td>JAK2</td>
<td>3 (2%)</td>
<td>6 (4%)</td>
</tr>
<tr>
<td>SF3B1</td>
<td>3 (2%)</td>
<td>8 (5%)</td>
</tr>
<tr>
<td>SRSF2</td>
<td>4 (2%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>NRAS</td>
<td>5 (3%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>CBL</td>
<td>4 (2%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>EZH2</td>
<td>2 (1%)</td>
<td>6 (4%)</td>
</tr>
</tbody>
</table>

50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50%
Multivariable Model – Karyotype Features and TP53

Univariate

<table>
<thead>
<tr>
<th>Three element model</th>
<th>HR [95% CI]</th>
<th>p-value</th>
<th>Multivariable</th>
<th>HR [95% CI]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monosomal Yes vs. No</td>
<td>1.95 [1.46-2.62]</td>
<td><0.001</td>
<td>1.26 [0.91-1.75]</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Number Abnormalities ≥5 vs. 4 or 3</td>
<td>2.26 [1.70-3.02]</td>
<td><0.001</td>
<td>1.61 [1.16-2.24]</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>TP53 Mutation vs. No mutation</td>
<td>2.57 [1.97-3.34]</td>
<td><0.001</td>
<td>2.12 [1.61-2.79]</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Median Overall Survival:

- **7.2 months**
- **14.4 months**
- **31.2 months**

Update on IWG-PM Efforts on the Impact of Somatic Mutations in MDS
International Working Group for the prognosis of MDS

13 countries | 25 centers

Elsa Bernard
Elli Papaemmanuil
International Working Group for the prognosis of MDS

Retrospective cohorts

- N=1,682
 - Bejar et al 2011
 - Haferlach et al 2014
 - Papaemmanuil et al 2013

Prospective sequencing study

- N=4,270
 - MSKCC IWG-PM Cohort
 - 13 countries 25 centers

Validation

- N to be determined
 - Cleveland
 - MD Anderson

Sequencing:

- 155 myeloid genes
- Genome-wide copy number probes
- Focal regions of LOH
- Panel information available on request
- Unmatched setting
- Coverage 600-800x
Detailed map of co-mutations: SF3B1 K700 other
SF3B1 phenotype and outcome shift with co-mutators

SF3B1 isolated or with TET2 / DNMT3A — No shift

[Graph showing survival probability over years with different groups: SF3B1-WT, SF3B1-isolated, SF3B1 with TET2 / DNMT3A. The log-rank test indicates p = 0.3.]

[Box plot showing platelet (PLT) values with median lines and interquartile ranges for each group.]
Copy Number and LOH Detection

E-H-100358-T1-1-D1-1

E-H-118049-T1-1-D1-1

Copy ratio (log2)
TP53 Mutation Configuration

Figure a:
- Number of patients with any hit on TP53 locus
- **N=275**
- Chr17 at the TP53 locus
- cnloh
- iso17q
- normal del gain

Figure b:
- TP53 mutation status:
 - 1mut
 - N=5
 - 3mut
 - N=24

Figure c:
- TP53 subgroup:
 - 1mut
 - N=126
 - >1mut
 - N=91
 - mut+del
 - N=85
 - mut+cnloh
 - N=78

Figure d:
- Probability of overall survival
- Cumulative incidence of AML

Figure e:
- Comparison of hazard ratios for OS and AML

Elsa Bernard and Elli Papaemmanuil et al. on behalf of the IWG-PM
Summary

• MDS is a genetically heterogeneous clonal disorder caused by a wide variety of pathogenic mechanisms.
• Mutations are not specific to MDS, but certain patterns of mutation are characteristic.
• Somatic (and germline) mutations convey important clinical information.
• These variants will soon be formally incorporated into the classification and risk assessment for MDS.
MDS at UC San Diego

MDS Center of Excellence at UC San Diego

Marla McArdle
Jennifer Galvan
Elizabeth Broome
Edward Ball
Matthew Wieduwilt
Carolyn Mulroney
James Magnan
Aaron Goodman
Sandy Shattil
Catriona Jamieson
Erin Reid
Natalie Galanina
Srila Gopal
Benjamin Heyman
Marc Schwartz
Olivia Reynolds
Huanyou Wang
Peter Curtin
Divya Koura
Caitlin Costello
Dimitrios Tzachanis
Dan Kauffman
John Adamson
Michael Choi
Tom Kipps
Annette Von Drygalski
Tiffany Tanaka

- Bejar Clinic
- Hematopathology
- BMT Group
- Hematology Group

Bejar Lab

Hannah Fields
Soo Park
Tiffany Tanaka
Brian Reilly
Randy Tsai
Armon Azizi

All of our PATIENTS and INFUSION CENTER nurses and staff!

UC San Diego
MOORES CANCER CENTER