Innate Immunity in MDS Pathogenesis

Alan List, MD

Regulation of Innate Immune Response

NIrp3 Inflammasome & Pyroptosis

MDSC Effectors of Ineffective Hematopoiesis Somatic Mutations License the Inflammasome

Pattern Recognition Receptors (PRR) Central to Innate Immune Response

pyroptosis

MYD88, myeloid differentiation primary response protein; TRIF, TIR-domain-containing adapter-inducing interferon- β ; MAL (MyD88-adaptor-like protein), .

Adopted from Dan Starczynowski 2017; Xing Y, et. al. I Immunol 2017;199.

Regulation of Innate Immune Response

NIrp3 Inflammasome & Pyroptosis

MDSC Effectors of Ineffective Hematopoiesis Somatic Mutations License the Inflammasome

Myeloid-Derived Suppressor Cells (MDSC)

*DAMP: danger-associated molecular pattern.

- Immature myeloid cells (IMC)
 - Human: Lin⁻HLA⁻DR⁻CD33⁺; Mouse: CD11b⁺Gr⁻1⁺ (<u>+</u>B220, CD31)
- Expand with age, infection, chronic inflammation, and neoplasia.
- Induce tumor immune tolerance & Treg expansion.
- Elaborate multiple soluble effectors: ROS, NO, and arginase; VEGF, TNFα, TGF-β, IFN, IL-6, IL-10 IL-1β & granzyme granules
- MDSC expansion and activation driven by TLR ligands (e.g., DAMP signals)

Gabrilovich D. Nat Rev Immunol. 2009 Mar; 9(3): 162–174.

MDSC Direct Ineffective Hematopoiesis in MDS

- Medullary MDSC are markedly expanded in LR-MDS and genetically distinct from the malignant clone
- MDS MDSC suppress autologous hematopoiesis
- The CD33-SIGLEC3 ITIM signaling receptor is overexpressed by MDS-MDSC & is indispensable for S100A9 induction of inflammatory cytokines
- S100A9 is a Ca⁺⁺ binding, proinflammatory myeloidrelated protein that binds CD33 & heterodimerizes with S100A8 to engage TLR4 & CD33
- S100A9 is overexpressed in MDS progenitors with high concentration in MDS BM plasma
- S100A9-Tg mice develop trilineage dysplasia and pancytopenia that phenocopies human MDS

S100A8/9-TLR4 Signaling Drives Mesenchymal Inflammation-induced Genotoxic Stress & Erythroid Death

Cell Extrinsic

Cell Intrinsic

Schneider R, et. al. Nat Med 2016; 22: 288 Zambetti & Raaijmakers. Cell Stem Cell 2016;19: 613–627.

Regulation of Innate Immune Response

NIrp3 Inflammasome & Pyroptosis

MDSC Effectors of Ineffective Hematopoiesis Somatic Mutations License the Inflammasome

Supramolecular Organizing Centers (SMOCs) Innate Immune Signaling Modules

MyDDosome

Inflammasome

Tan Y, Kagan J. Cell 2019; 177:1-15.

NLRP Inflammasomes

- Nucleotide-binding & oligomerization domain (NOD)-like receptor proteins (NLRP) are cytosolic PRRs that respond to danger signals to trigger inflammasome (IFM) formation
- NLRP3 (NALP3 or cryopyrin) forms IFM complex by associating with ASC adaptor, which recruits Pro-Caspase-1 through its CARD domain
- Caspase-1 undergoes autocatalytic processing to yield two subunits that form the active caspase cleaving pro-IL-1 & -18, and gasdermin-D (pyroptosis)

Adopted from Rock KL, et. al. Ann Rev Immunol 2010; 28:321.

Pyroptosis: Caspase-1 Dependent Inflammatory Cell Death

Characteristic	Apoptosis	Pyroptosis	
Cell lysis	-	+	
Cation channel activation	-	+	
Nuclear condensation	+	+	
DNA fragmentation	+	+	
PS externalization	+	+	
Inflammasome assembly	-	+	
Caspase-1 activation	-	+	
Caspase-3 activation	+	late	
Inflammatory cytokines	-	+	

PS denotes Phosphatidylserine

NLRP3 Inflammasome (IFM) Priming & Activation

Primary MDS Bone Marrow Progenitors Display NLRP3 Inflammasome Activation

Basiorka A, et. al. Lancet Haematol 2018; Sep;5(9):e393-e402.

Plasma ASC Specks are a Pyroptosis Biomarker in MDS [n=249]

Basiorka A, et. al. Lancet Haematol 2018; Sep;5(9):e393-e402.

Flow Cytometric Assessment of Pyroptotic Versus Apoptotic Cell Death

Functional Dependence on Pyroptosis vs. Apoptosis in MDS

CASP-1, NLRP3 vs. CASP-3 shRNA

Pyroptotic vs. Apoptotic Fraction

S100A9 Neutralization Suppresses Pyroptosis & Improves CFC in LR-MDS BM Specimens

Colony-Forming Capacity

Basiorka A, et. al. Blood. 2016;128(25):2960-2975.

NLRP3 IFM Inhibition Improves Hematopoiesis in LR-Risk MDS & S100A9-Tg Mice

Cation Channel Activation Triggers Cell Swelling & NLRP3 Inflammasome Assembly

Adopted from Saxena M, et. al. Front Immunol 2014; Block K, et. al. Nat Rev Cancer 2012.

ROS-sensitive Ion Channels Promote Cation Influx & Cell Volume Expansion in MDS Precursors

Basiorka A, et. al. Blood. 2016;128(25):2960-2975

ROS & Nuclear β-Catenin Expression is Increased in LR MDS & Induced by S100A9

Normal (n=3)

TCF/LEF controlled genes (cyclin D1/E2, c-Myc, CDK4/6)

Basiorka A, et. al. Blood. 2016;128(25):2960-2975

MDS (n=3)

Regulation of Innate Immune Response

NIrp3 Inflammasome & Pyroptosis

MDSC Effectors of Ineffective Hematopoiesis Somatic Mutations License the Inflammasome

U2AF1 Splicing Gene Mutations Induce Nuclear β-Catenin Localization via NOX-generated ROS

Basiorka A, et. al. Blood. 2016;128(25):2960-2975.

U2AF1 Mutant Cells Display Increased Pyroptosis & Cation Channel Activation

Splicing mutations U2AF1 SF3B1 SRSF2 Chromatin remodeling - ASXL1 DNA methylation - TET2 Ribosomopathy - RPS14^{+/-}

Basiorka A, et. al. Blood. 2016;128(25):2960-2975.

Pyroptotic Fraction Increases with Somatic Mutant Clone Size & Complexity

Basiorka A, et. al. Blood. 2016;128(25):2960.

Basiorka A, et. al. Lancet Haematol 2018; Sep;5(9):e393-e402.

Genetic Priming of TLR-Signaling in MDS

Genetic Abnomality	Gene Class	Mutant Gene or Chromosome Alteration	Innate Immune Signaling Effect	Reference
Somatic Mutations	Epigenetic Modifiers	TET2	↓HDAC2 recruitment: \uparrow IL-6, NF- κ B, \uparrow IL-1β	23, 25, 34
		DNMT3A	↑HDAC9;↑Type 1 IFN	24
		ASXL1	↑NADPH oxidase ROS; ↑TLR4, TICAM2	34
		EZH2	↑ S100A8/A9	20-21
	Spliceosomal	SF3B1	↑ Degradation of TLR negative regulator MyD88S	26, 34
		SRSF2	↑ S100A8/9, DNA-RNA hybrids	20-21;34,35
		U2AF1	↑ DNA-RNA hybrids, ATG7 alternate splicing impairing autophagy; IRAK4-L mydosome activation	34-37
Chromosomal Abnormality	N/A	Deletion 5q	Allelic deletion <i>RPS14</i> : ↑S100A8/A9; <i>miR-145/146:</i> + <i>TIFAB</i> : ↑TRAF6, IRAK1	8-10;19

Sallman & List. BLOOD 2019.

Strategies for Therapeutic Intervention

Adopted from Karki R, et. al. Cancer Immunol Res 2017; 5(2); 94–99.

Targeting the IL-1β Signaling Axis in MDS

- IL-1β is the principal inflammatory cytokine generated by the NIrp3 inflammasome that has broad biological activities:
 - TLR/myddosome signaling induces inflammatory cytokines (S100A9, TNFα, IL-6), PDL-1, SPY1 (PU.1) and Nlrp3 inflammasome activation
 - activates β-catenin to induce MYC and MDSC expansion, and chromatin remodeling
 - active caspase 1 cleaves GATA1 to raise the Spi1/GATA1 ratio favoring myeloid commitment, maturation arrest & anemia
 - directs myeloid skewing & immuno-senescence, suppresses late stage erythropoiesis, and decreases release of erythropoietin
- Canakinumab is a fully humanized monoclonal antibody of the IgG1/k isotype that neutralizes IL-1β
- FDA approved & effective in autoinflammatory disorders including CAPS syndromes with activating NLRP3 mutations

Cluzeau T, et. al. Haematologica 2017 Dec;102:2015; Kennedy DE. J Immunol 2017, 198:3471-79; Tyrkalska SD, et. al. Immunity 2019; 51:1-14.; Tu, S. et al. Cancer Cell 2008;14: 408.; Song, X, et al. J Immunol 2005.

Phase Ib/II Study of Canakinumab with Darbepoetin in Patients with LR-MDS who Failed ESAs

Eligibility: VL, LR, IR- IPSS-R; \geq 1unit RBC x8 wks prior to randomization, ESA failure **Exclusions:** prior HMA or allo-HCT **Design:** Phase 1b: 3+3 dose escalation; Phase 2: Simon's two-stage (Stage 1: enroll 10 at MTD, if > 2 achieve HI-E, Stage 2: enroll additional 19 pts). >6 HI-E, merits further study. **Primary end-point:** *Phase 1b* – MTD & RP2D; *Phase 2* – IWG 2006 HI-E.

Acknowledgements

Collaborators:

Drs. David Sallman & Rami Komrokji Dr. Kathy McGraw & Amy McLemore Drs. Seishi Ogawa & Masashi Sanada Drs. Benjamin Ebert & Esther Obeng Dr. Omar Abdel-Wahab Contact: Email: <u>dr.alanlist@gmail.com</u> Cell: 813-521-4630

Specialized Center for Research Program [SCOR]

The HENRY & MARILYN TAUB Foundation