Beyond Hypomethylating Agents:

Combination Therapies in MDS

Mikkael A. Sekeres, MD, MS
Professor of Medicine
Vice-chair for Clinical Research
Director, Leukemia Program

Cleveland Clinic
Beyond HMAs | Agenda

- Predicting Responders to HMAs
- Combinations – Lower-risk
- Combinations – Higher-risk
- Conclusions
Beyond HMAs | Agenda

- Predicting Responders to HMAs
- Combinations – Lower-risk
- Combinations – Higher-risk
- Conclusions
Beyond HMAs | Mutation Risk

Driver genes can be classified into molecular subtypes differentially associated with disease severity

Somatic mutations may predict response or resistance to HMA:

- \textit{TET2} mutations may predict response
- \textit{ASXL1} may predict resistance
- \textit{TP53} mutations may predict response

Challenges with these data:

- Response might be higher but the mutation is not a biomarker
- Genomic data are complex

Nazha A, et al. JCO Prec Oncol 2019;3
Beyond HMAs | Mutations/Response
Beyond HMAs | Mutations/Response

Patient 1
- ASXL1
- TET2
- RUNX1

Patient 2
- TP53
- RCOR
- SRSF2

HMA Response

HMA Resistance

Nazha A, et al. JCO Prec Oncol 2019;3
Beyond HMAs | Mutations/Response

Responders

Non-Responders

N = 433 Patients treated with HMAs Validated in 113 Patients enrolled in S1117

Nazha A, et al. JCO Prec Oncol 2019;3
Beyond HMAs | Mutations/Response

Results: Association Rules

Training

<table>
<thead>
<tr>
<th>Association Rules (Resistance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASXL1, NF1</td>
</tr>
<tr>
<td>ASXL1, EZH2, TET2</td>
</tr>
<tr>
<td>ASXL1, EZH2, RUNX1</td>
</tr>
<tr>
<td>EZH2, SRSF2, TET2</td>
</tr>
<tr>
<td>ASXL1, EZH2, SRSF2</td>
</tr>
<tr>
<td>ASXL1, RUNX1, SRSF2</td>
</tr>
<tr>
<td>ASXL1, TET2, SRSF2</td>
</tr>
<tr>
<td>ASXL1, BCOR, RUNX1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Association Rules (Response)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET2, RUNX1, SRSF2</td>
</tr>
</tbody>
</table>

- 31% pts
 - ≥ 3 mutations/sample
- 29% pts
 - Very Low/Low risk by IPSS-R
- ORR to HMAs = 43%
- Median # mutations per patient = 3 (range, 0-9)

Accuracy: 87%

Nazha A, et al. JCO Prec Oncol 2019;3
Group Median OS (m)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median OS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 mut/sample</td>
<td>28.2</td>
</tr>
<tr>
<td>(\geq 3) mut/sample w/o rules (69%)</td>
<td>22.8</td>
</tr>
<tr>
<td>(\geq 3) mut/sample w rules (31%)</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Beyond HMAAs | Mutations/Response

Nazha A, et al. JCO Prec Oncol 2019;3
Beyond HMAs | Agenda

- Predicting Responders to HMAs
- **Combinations – Lower-risk**
- Combinations – Higher-risk
- Conclusions
Lower-risk MDS | Ameliorating Anemia: LEN

Key inclusion criteria
- Centrally reviewed IPSS Low or Int-1-risk MDS with karyotypes other than del(5q)
- RBC-TD
- Unresponsive or refractory to ESAs

Pretreatment

Double-blind (DB) treatment

Off-treatment

Matching placebo

LEN 10 mg, orally, QD

RBC-TI ≥ 8 weeks or erythroid response

Long-term follow-up (≥ 5 years from randomization)
- Overall survival
- AML progression
- Subsequent MDS treatments
- SPMs

Discontinue DB phase

W 24

Santini et al. JCO 2016;34:2988
Significantly more LEN patients achieved RBC-TI ≥ 8 weeks versus placebo ($P < 0.001$)

Santini et al. JCO 2016;34:2988
List et al, Abstract 824: Combined Treatment with Lenalidomide and Epoetin Alfa in Epo refractory Non-Deletion 5q [Del(5q)] MDS: E2905 Phase III Study

- Randomized Phase III low risk non-del(5q) ESA resistant or high endogenous EPO level (>500).
- Len 10 mg/day * 21 versus Len plus EPO 60K/week
- 205 patients randomized - 14 not treated due to EPO shortage
- Median transfusion burden 4 U/8 weeks
- 93% prior ESA; 18% prior DNMTi

AF List et al. ASH 2019; Abstract 824
LEN +/- EPO

<table>
<thead>
<tr>
<th></th>
<th>Lenalidomide</th>
<th>Lenalidomide plus EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>96</td>
<td>99</td>
</tr>
<tr>
<td>Major Erythroid Response</td>
<td>11 (11.5%)</td>
<td>28 (28.3%)</td>
</tr>
</tbody>
</table>

After 16 weeks of therapy

<table>
<thead>
<tr>
<th></th>
<th>Lenalidomide</th>
<th>Lenalidomide plus EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>64</td>
<td>73</td>
</tr>
<tr>
<td>Major Erythroid Response</td>
<td>10 (16%)</td>
<td>28 (39%)</td>
</tr>
</tbody>
</table>

CROSSOVER To COMBO

| Major Erythroid Response | 11/44 |

Duration of MER

<table>
<thead>
<tr>
<th>Median (months)</th>
<th>Lenalidomide</th>
<th>Lenalidomide plus EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

AF List et al. ASH 2019; Abstract 824
Fenaux et al, Luspatercept: RBC-TI ≥ 8 weeks Achieved any time during treatment period

Patients Achieving RBC-TI ≥ 8 Weeks Any Time During the Treatment Period (%)

- Luspatercept (n = 153): 47.7%
- Placebo (n = 76): 15.8%

\[P < 0.0001^a \]
\[\text{OR (95\% CI)}^a: 5.978 \ (2.840–12.581) \]

Fenaux et al. ASH 2019, Abstract 841
The L2 Regimen

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Lenalidomide Schedule</th>
<th>Luspatercept Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 mg PO days 1-21</td>
<td>1.0 mg/kg day 1</td>
</tr>
<tr>
<td>2</td>
<td>5 mg PO days 1-21</td>
<td>1.33 mg/kg SC day 1</td>
</tr>
<tr>
<td>3</td>
<td>5 mg PO days 1-21</td>
<td>1.75 mg/kg SC day 1</td>
</tr>
</tbody>
</table>

Phase IB/II
Lower-risk, Non-Del(5q)
N = 40
Beyond HMAs | Agenda

- Predicting Responders to HMAs
- Combinations – Lower-risk
- **Combinations – Higher-risk**
- Conclusions
Log-Rank $p=0.0001$

$HR = 0.58 \ [95\% \ CI: 0.43, 0.77]$

$\text{ORR}=35\%$

50.8%

24.4 months

15 months

26.2%

AZA

CCR

Median OS 10.1 vs. 8.5 months

ECOG E1905

Eligible patients (no prior azacitidine):

• **MDS** (higher risk; if IPSS low/INT-1 risk, then platelets <50 x 10^9/L or ANC<500)
• **CMML** with WBC <12 x 10^9/L
• **AML** with multilineage dysplasia and WBC ≤30 x 10^9/L for ≥4 weeks

Primary Endpoint:

IWG 2000 responses with hematological normalization (CR+PR+trilineage HI)

Azacitidine SC 50 mg/m² x 10 days every 28 days, plus Entinostat (MS-275) 4 mg/m² PO days 3 and 10 each cycle

Prebet et al. JCO 2014;32:1242
E1905 study results

<table>
<thead>
<tr>
<th>Response / AE</th>
<th>Arm A (n=68) (azacitidine monotherapy)</th>
<th>Arm B (n=68) (combination therapy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response (CR)</td>
<td>12%</td>
<td>7%</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>Trilineage hematological improvement (tHI)</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Qualifying Response (CR+PR+tHI)</td>
<td>31%</td>
<td>24% (p=NS)</td>
</tr>
<tr>
<td>Other hematological improvement</td>
<td>12%</td>
<td>19%</td>
</tr>
<tr>
<td>Any response</td>
<td>43%</td>
<td>44%</td>
</tr>
<tr>
<td>Grade IV thrombocytopenia</td>
<td>44%</td>
<td>63% (p=0.07)</td>
</tr>
<tr>
<td>Grade III/IV fatigue</td>
<td>13%</td>
<td>23% (p=0.13)</td>
</tr>
</tbody>
</table>
Aza + Pracinostat in MDS: Study Design

- Intermediate Risk-2 or High Risk MDS Patients Previously Untreated w/ HMA

 - Pracinostat + Azacitidine
 - Placebo + Azacitidine

- 102 evaluable patients: one-to-one randomization
- Azacitidine: 75 mg/m² 7 days I.V./sq every 28 days
- Pracinostat or placebo P.O. 60 mg 3 days/week for 3 weeks
- Cycles repeated every 28 days until disease progression, lack of benefit, or intolerance

Aza + Pracinostat in MDS: Summary of Response

<table>
<thead>
<tr>
<th>Best Response</th>
<th>Pracinostat</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Remission</td>
<td>20%</td>
<td>33%</td>
</tr>
<tr>
<td>Partial Remission</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Marrow CR</td>
<td>28%</td>
<td>22%</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>26%</td>
<td>29%</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>22%</td>
<td>10%</td>
</tr>
<tr>
<td>CR, within 180 days</td>
<td>18%</td>
<td>33%</td>
</tr>
</tbody>
</table>
Aza + Pracinostat in MDS: Summary of Response

<table>
<thead>
<tr>
<th>RESPONSE</th>
<th>Pracinostat</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematological improvement</td>
<td>35%</td>
<td>55%</td>
</tr>
<tr>
<td>Erythroid response (HI – E)</td>
<td>28%</td>
<td>45%</td>
</tr>
<tr>
<td>Platelet response (HI – P)</td>
<td>31%</td>
<td>53%</td>
</tr>
<tr>
<td>Neutrophil response (HI – N)</td>
<td>26%</td>
<td>39%</td>
</tr>
<tr>
<td>Clinical benefit rate (CR + PR + HI + mCR)</td>
<td>53%</td>
<td>63%</td>
</tr>
<tr>
<td>Cytogenetic response</td>
<td>42%</td>
<td>55%</td>
</tr>
<tr>
<td>Cytogenetic CR</td>
<td>24%</td>
<td>29%</td>
</tr>
<tr>
<td>Cytogenetic PR</td>
<td>18%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Higher-risk MDS or CMML

(IPSS ≥1.5 and/or blasts ≥5%)

- **AZA (IV/SC)**
 - 75 mg/m²/d (d1-7)
 - N=92

- **AZA (IV/SC) + LEN (PO)**
 - 75 mg/m²/d (d1-7) + 10mg/d x 21d
 - N=93

- **AZA (IV/SC) + Vorin (PO)**
 - 75 mg/m²/d (d1-7) + 300mg BID (d3-9)
 - N=92

Groups: SWOG, ECOG, Alliance, NCIC

Total Sample Size: 282/277

Primary Objective: 20% improvement of ORR (CR/PR/HI) based on 2006 IWG Criteria

Secondary Objectives: OS, RFS, LFS

Power 81%, alpha 0.05 for each combo arm vs. AZA

06/2012 – 06/2014

Higher-risk MDS | Combinations

<table>
<thead>
<tr>
<th>Variable</th>
<th>AZA</th>
<th>AZA+LEN</th>
<th>AZA+VOR</th>
<th>Total n=277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs, range)</td>
<td>69 (42, 88)</td>
<td>70 (51, 86)</td>
<td>70 (28, 93)</td>
<td>70 (28, 93)</td>
</tr>
<tr>
<td>Female</td>
<td>31 (34)</td>
<td>32 (34)</td>
<td>22 (24)</td>
<td>81 (31)</td>
</tr>
<tr>
<td>CMML</td>
<td>18 (20)</td>
<td>19 (20)</td>
<td>16 (18)</td>
<td>53 (19)</td>
</tr>
<tr>
<td>tMDS</td>
<td>7 (8)</td>
<td>6 (6)</td>
<td>5 (5)</td>
<td>19 (7)</td>
</tr>
<tr>
<td>Baseline ANC (x10^3)</td>
<td>2 (0, 110)</td>
<td>1 (0, 336)</td>
<td>2 (0, 36)</td>
<td>2 (0, 336)</td>
</tr>
<tr>
<td>Baseline Platelet count (x10^3)</td>
<td>70 (8, 4000)</td>
<td>75 (3, 452)</td>
<td>62 (3, 1462)</td>
<td>68 (3, 4000)</td>
</tr>
<tr>
<td>Baseline Median Blast %</td>
<td>8 (0, 22)</td>
<td>10 (0, 20)</td>
<td>10 (1, 18)</td>
<td>9 (0, 22)</td>
</tr>
</tbody>
</table>

Higher-risk MDS | Combinations

<table>
<thead>
<tr>
<th>Toxicity Variable</th>
<th>AZA</th>
<th>AZA+LEN (P-value vs. AZA)</th>
<th>AZA+VOR (P-value vs. AZA)</th>
<th>Total n=271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile neutropenia (n)</td>
<td>10</td>
<td>13 (.66)</td>
<td>12 (.51)</td>
<td>36</td>
</tr>
<tr>
<td>GI (n)</td>
<td>4</td>
<td>12 (.10)</td>
<td>14 (.02)</td>
<td>28</td>
</tr>
<tr>
<td>Rash (n)</td>
<td>3</td>
<td>14 (<.01)</td>
<td>1 (1)</td>
<td>17</td>
</tr>
<tr>
<td>Off Tx due to Toxicity/Side Effect/Complication</td>
<td>8%</td>
<td>20% (.05)</td>
<td>21% (.03)</td>
<td>18%</td>
</tr>
<tr>
<td>Non-protocol defined dose modifications</td>
<td>24%</td>
<td>43% (.002)</td>
<td>42% (.01)</td>
<td>33%</td>
</tr>
</tbody>
</table>

Higher-risk MDS | Combinations

<table>
<thead>
<tr>
<th>Response Variable</th>
<th>AZA</th>
<th>AZA+LEN (P-value vs. AZA)</th>
<th>AZA+VOR (P-value vs. AZA)</th>
<th>Total n=277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Tx Duration (Wks)</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Overall Response Rate (%)</td>
<td>38</td>
<td>49 (.16)</td>
<td>27 (.16)</td>
<td>38%</td>
</tr>
<tr>
<td>CR/PR/HI (%)</td>
<td>24/0/14</td>
<td>24/1/25</td>
<td>17/1/9</td>
<td>22/1/16%</td>
</tr>
<tr>
<td>CMML ORR (%)</td>
<td>5 (28)</td>
<td>13 (68) (.02)</td>
<td>2 (12) (.41)</td>
<td>37%</td>
</tr>
<tr>
<td>ORR Duration (median)</td>
<td>10 months</td>
<td>14 months (.41)</td>
<td>15 months (.31)</td>
<td>14 months</td>
</tr>
<tr>
<td>CMML ORR Duration (median)</td>
<td>15 months</td>
<td>14 months (.87)</td>
<td>24 months (.69)</td>
<td>15 months</td>
</tr>
</tbody>
</table>

Higher-risk MDS | Combinations

Overall Survival

Aza vs Aza+Len log-rank p = 0.55
Aza vs Aza+Vor log-rank p = 0.1
Aza vs Combo arms log-rank p = 0.2

Comparisons are between combination arms and AZA monotherapy

Higher-risk MDS | Combinations

Overall Survival After Failure

- Aza
- Aza+Len
- Aza+Vor

Aza vs Aza+Len log-rank p = 0.72
Aza vs Aza+Vor log-rank p = 0.031
Aza vs Combo arms log-rank p = 0.14

Survival probability vs Weeks since failure

N at risk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>83</th>
<th>44</th>
<th>29</th>
<th>17</th>
<th>7</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aza+Len</td>
<td>84</td>
<td>46</td>
<td>31</td>
<td>20</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aza+Vor</td>
<td>86</td>
<td>58</td>
<td>36</td>
<td>20</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Higher-risk MDS | Targeting TP53

APR-246 binds covalently to p53...

...restores wt p53 conformation & activity...

...and triggers cell cycle arrest and apoptosis

Median duration of follow-up = 10.8 months

Wei et al, Abstract 568 – AZA plus Venetoclax for HR-MDS

- Phase 1b study
- Untreated *de novo* MDS, IPSS Int-2 or high risk, not planning intensive chemo or transplant
- Ven days 1-14 (400 mg/day, no ramp up)
 - Prophylactic antimicrobials required
- 57 patients
 - Med Age 71 (26-85);
 - IPSS-R very high risk: 60%
Wei et al, Abstract 568 – AZA plus Venetoclax for HR-MDS: Response Rates

Excludes patients of arm C (Aza only); Objective response rate (ORR) includes [complete remission (CR) + marrow complete remission (mCR) + partial remission (PR)]; # of patients with PR=0; per IWG (Cheson et al., Blood/2006;108:419-425)

DoR: Duration of response; HI: hematological improvement; HI-E: hematologic improvement in erythroids; HI-N: hematologic improvement in neutrophils; HI-P: hematologic improvement in platelet count; n: patients with favorable outcomes; N: patients eligible for evaluating outcomes

Median time to CR, months (range) 2.2 (1.2-11.1)

12-mo estimate of DoR after CR, % (95% CI) 83.3 (2.3, 97.5)

mCR with HI (HI-E, HI-P or HI-N), n/N (%) 10/22 (45.5)
Abstract 569 – AZA plus Magrolimab for HR-MDS

• CD47 is a macrophage immune checkpoint and "Do Not Eat Me" signal in MDS
• Magrolimab targets CD47 and synergizes with AZA in preclinical models
• Phase 1b study
• Untreated MDS, IPSS-R intermediate or higher risk disease
 – Magro dose ramp up to 30mg/kg weekly in C1 to mitigate on-target anemia
 – AZA given at standard 75mg/m2 D1-7 doses
• 35 patients
 – Med Age 70 (47-80);
 – IPSS-R high or very high risk disease: 65%
• Safety profile consistent with AZA monotherapy; on-target anemia seen but mitigated with ramp up (median Hgb drop 0.4 g/dL with first dose)

Sallman et al. ASH 2019 Abstract #569.
AZA plus Magrolimab for HR-MDS – Preliminary Efficacy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1L MDS N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>12 (50%)</td>
</tr>
<tr>
<td>CRI</td>
<td>-</td>
</tr>
<tr>
<td>PR</td>
<td>0</td>
</tr>
<tr>
<td>MLFS/marrow CR</td>
<td>8 (33%)</td>
</tr>
<tr>
<td></td>
<td>4 with marrow CR + HI</td>
</tr>
<tr>
<td>Hematologic improvement (HI)</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>SD</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
</tr>
<tr>
<td>RBC transfusion independence¹</td>
<td>4/9 (44%)</td>
</tr>
<tr>
<td>Complete cytogenetic response in responders²</td>
<td>5/19 (26%)</td>
</tr>
<tr>
<td>MRD negativity in responders</td>
<td>5/22 (23%)</td>
</tr>
<tr>
<td>Median duration of response (months)</td>
<td>Not reached (0.03+ – 9.76+)</td>
</tr>
<tr>
<td>Median follow-up [range] (months)</td>
<td>6.4 [2.0 – 14.4]</td>
</tr>
</tbody>
</table>

Med OS not reached
5 patients received allogeneic HSCT

Sallman et al. ASH 2019 Abstract #569.
BRIGHT MDS & AML 1012 Study Design

- BRIGHT MDS & AML 1012 (NCT02367456) is an ongoing open-label, multicenter, phase 1b trial
- Key eligibility criteria:
 - Patients were aged ≥18 years
 - Newly diagnosed AML, higher-risk MDS, and CMML
 - Clinical indication for treatment with AZA for AML or MDS
 - No prior treatment with a Smoothened inhibitor and/or a hypomethylating agent

<table>
<thead>
<tr>
<th>Population</th>
<th>Treatment</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML cohort (n=30) • De novo or secondary AML</td>
<td>Glasdegib + AZA • Glasdegib 100 mg once daily • AZA (75 mg/m²/day) on Days 1–7 of a 28-day cycle</td>
<td>Primary • Rate of CR</td>
</tr>
<tr>
<td>MDS cohort (n=30) • MDS (intermediate, high, or very high risk by IPSS-R) or CMML</td>
<td></td>
<td>Secondary • Overall survival • Disease-specific efficacy measures • Time to and duration of CR • Safety • Pharmacokinetic analysis</td>
</tr>
</tbody>
</table>

AML=acute myeloid leukemia; AZA=azacitidine; CMML=chronic myelomonocytic leukemia; CR=complete remission; IPSS-R=Revised International Prognostic Scoring System; MDS=myelodysplastic syndrome
MDS Cohort: Overall Survival With Best Overall Response

<table>
<thead>
<tr>
<th>Response</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>PR</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>HI without CR or PR</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>CR + PR + HI without CR or PR</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>mCR</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>SD</td>
<td>8 (26.7)</td>
</tr>
</tbody>
</table>

AZA=azacitidine; BOR=best overall response; CMML=chronic myelomonocytic leukemia; CR=complete remission; EOT=end of treatment; HI=hematologic improvement; mCR=marrow complete remission; MDS=myelodysplastic syndrome; PD=progressive disease; PR=partial remission; SD=stable disease
MDS Cohort: Preliminary Overall Survival

All Patients

<table>
<thead>
<tr>
<th>No. at risk</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>23</th>
<th>22</th>
<th>19</th>
<th>18</th>
<th>9</th>
<th>8</th>
<th>8</th>
<th>7</th>
<th>7</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Events (%)</td>
<td>Glas + AZA</td>
<td>10/30 (33.3)</td>
<td></td>
</tr>
<tr>
<td>mOS (95% CI), mo</td>
<td>15.8 (9.3–NE)</td>
<td></td>
</tr>
</tbody>
</table>

IPSS-R Genetic Risk Category

<table>
<thead>
<tr>
<th>No. at risk</th>
<th>4</th>
<th>4</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Events (%)</td>
<td>Intermediate</td>
<td>0/4 (0)</td>
<td></td>
</tr>
<tr>
<td>mOS (95% CI), mo</td>
<td>NE (NE–NE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>4/14 (28.6)</td>
<td></td>
</tr>
<tr>
<td>mOS (95% CI), mo</td>
<td>NE (4.7–NE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very high</td>
<td>5/9 (55.6)</td>
<td></td>
</tr>
<tr>
<td>mOS (95% CI), mo</td>
<td>15.8 (0.5–NE)</td>
<td></td>
</tr>
</tbody>
</table>

Risk category based on 27 MDS patients alone.

AZA = azacitidine; CI = confidence interval; Glas = glasdegib; IPSS-R = Revised International Prognostic Scoring System; MDS = myelodysplastic syndrome; mo = months; mOS = median overall survival; NE = not evaluable
Beyond HMAs | **Other Combos**

- AZA + Checkpoint inhibitors
- AZA + Other HDAC-I
- AZA + Pevonedistat
- AZA + IDHi (or IDHi alone)
- AZA + mAb (or mAb alone)
- AZA + Rigosertib

(or DAC + any of the above)
Beyond HMAs | Agenda

- Predicting Responders to HMAs
- Combinations – Lower-risk
- Combinations – Higher-risk
- Conclusions
Beyond HMAs | Conclusions

- Predicting response to HMAs coming of age
- Combos in lower-risk MDS focused on anemia
- Combos in higher-risk take different mechanism of action approaches or on genetics

Our drugs fail our patients! Our patients don’t fail our drugs.
Thanks!!!

Cleveland Clinic Leukemia/MDS Program

Jaroslaw Maciejewski, MD, PhD
Sudipto Mukherjee, MD, PhD
Hetty Carraway, MD, MBA
Anjali Advani, MD
Matt Kalaycio, MD
Ronald Sobecks, MD
Betty Hamilton, MD
Aaron Gerds, MD, MS
Aziz Nazha, MD
Bhumika Patel, MD
Yogen Saunthararajah, MD
Babal Jha, PhD
Abby Statler, PhD
Tracy Cinalli, RN
Jackie Mau, RN
Christine Cooper, RN
Andrea Smith, RN
Eric Parsons, RN
Samjhana Bogati, RN
Yolanda Curry, RN
Bethany Clayton, RN
Sarah Larson, RN
Rachel Bordwell, RN, NP
Raychel Berardinelli, RN, NP
Kathryn Mohr, RN, NP
Jodi Campo, RN, NP
Barb Tripp, RN, NP
Alicia Bitterice, RN, NP
Meghan Scully, RN, NP
Kaylee Root, MBA
Ben Pannell, MBA
Eric Wiedenfeld, MBA
Nicholas Wright, MBA
Allison Unger, BS
George Lucas, MBA
Andrew Brzezinski, BS
Melina Sharif, BA
Brielle Barth, BS
Corrine Braynard, BS
Enxhi Myrtaj, BS
Diane Banks, MS
Katarina Paulic, BA
John DeSamito, MD
Renae Gagnon, BS
Rodwin Bren Chua, BS
Olivia Kodramaz
Caitlin Swann, PharmD
Madeline Waldron, PharmD
Kelly Gaffney, PharmD
Jenna Thomas, PharmD

And Our Patients!!!

April 2020!