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Myelodysplastic Syndromes (MDS)
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e Acute Leukemia (20%-60%)




MDS Diagnosis — gold standard

Bone marrow examination

But...
— Invasive
— Painful .
— Possible bleeding (thrombocytopenia)
— Difficult for the older patients




Aim of this study

Can we diaghose MDS noninvasively
in at least a portion of the patients?




Stage |: Logistic regression (LoR)

MDS patients: 48
Control patients: 63
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Stage |: Logistic regression (LoR)

- Area under ROC curve (AUC) =0.748
- Two cutoffs:
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Undetermined diagnosis

Approximately 50% could benefit from noninvasive diagnosis

(Oster et al. Leuk & Lymph 2018: 59; 2222)




Model improvement

Improve the AUC
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Figure 2 Model ROC Curves

— - Gradient Boosted Model
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More patients could benefit from noninvasive diagnosis of MDS




Improved model (Stages Il and Ill)

* More patients

— MDS:

* Israel MDS registry (>260)
e European MDS registry (>2600)

— Controls: Ichilov pathology data base
 More variables

e Better model

— Gradient Boosted Model (GBM)
— Much more complex than LoR
— Takes into account the interactions among variables

Collaboration with York University




Improved model

e Stage Il (ASH 2017)

— Patients:
e MDS: 178
e Controls: 178

— Gradient Boosted Model (GBM)
— Number of variables: 6 variables

» Stage lll (ASH 2018)

— Patients:

e MDS: 502
e Controls: 502

— Gradient Boosted Model (GBM)
— Number of variables: 10 variables
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Noninvasive MDS diagnosis, in practice
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Noninvasive MDS diagnosis, in practice
MDS Predictive Modelling

Disclaimer

This web appication 15 expenmental, and should not be used in the dagnosis of any medical condition

What is the age of the patient? (In years) Sex (MF)
o Mak
Female
Haemaglobin Count? White Blood Count?
Platelet Count? Mean Corpuscular Volume?
.
Neutrophil Count? Monoceyte Count?
N 9
Blood Glucose Concentration? Creatinine?
Calculate

shiny.york.ac.uk/mds




Noninvasive MDS diagnosis, in practice

MDS Predictive Modelling

Age =75
Hemoglobin=10.5
Platelets = 125

Neutrophils=10.9
Glucose = 100

Blood Glucose Concentration?

shiny.york.ac.uk/mds

Sex = Male
WBC =3.1
MCV =101

Monocytes = 0.2

Creatinine=1.1




Noninvasive MDS diagnosis, in practice
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Model Quality

* One cut-off (AUC=0.97): improved!
— Sensitivity = 88%
— Specificity = 95%
* Two cut-offs
— 90% PPV (above upper cut-off)
— 95% NPV (below lower cut-off)

— Indeterminate region: improved! |-><-|

* 14% of the patients
* (50% in our earlier modef)
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Noninvasive MDS diagnosis, in practice

MDS Predictive Modelling
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Noninvasive MDS diagnosis, in practice

MDS Predictive Modelling

MDS Predictive Modelling
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Future Work

Complete/improve (internet, cellphone...) and publish
Improve the model — stage IV
— Increase numbers of patients and variables
Incorporate additional peripheral blood parameters
* Flow cytometry
* Genetic info
Use the model for other purposes
— Prognosis
— Follow up




Summary and Conclusions

Stage 1:
— 6 variables, (48 and 63 patients), LoR model
— Diagnose/exclude MDS in 50% of patients.
Stage 2:

— GB model, 178 and 178 patients
— Model improvement

Stage 3:

— 10 variables, 502 and 502 patients, GB model diagnosed
— PPV =90%; NPV =95%
— Diagnose/exclude MDS in 86% of patients.

Conclusion: For most patients, MDS can be diagnosed or ruled
out noninvasively without a bone marrow examination.
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