Myelodysplastic Syndromes: Molecular & Clinical Classifications

Peter Greenberg Stanford University Cancer Institute Stanford, CA

Tel Aviv MDS Foundation Meeting March 2020

Disclosures

- Novartis—Advisory Group
- Celgene-Research funds
- H3 Biotech "
- Aprea "
- Notable Labs "

MDS Classification: Trajectory

- Prior systems
 - Characterization: Morphology—dysplasia, marrow blast %
 - FAB 1982; WHO 2001, 2008, 2016
 - Classification: Clinical prognostic risk-based analyses
 - Morphology/CBC/Cytogenetics codified/quantified
 - IPSS 1997; IPSS-R 2012; WPSS-R 2015
 - Mutations 2011 present
 - Type, number, allelic status, co-mutations
- Molecular variables as complement to clinical features
 - Cytogenetic abnormalities in only ~50% MDS patients
 - Numerous mutational subtypes often with low incidence
 - Multiple co-mutations influencing clinical outcomes

 \rightarrow IPSS-R/Molecular project

MDS Classifications 1982-97

	BM		Cyto-		
<u>System</u>	BIASTS	<u>Cytopenias</u>	genetics	<u>Age</u>	LDH
Bennett '82, FAB	+	-	-	-	-
Mufti '85,UK	+	+, 3	-	-	-
Sanz '89, Spain	+	+, 3	-	+	-
Aul '92, Germany	+	+, 2	-	+	+
Morel '93, France	+	+, 1	+	-	-
Toyama '93, Japan	+	+, 3	+	+	-
Greenberg '97. IPSS	+	+, ' 3'	+	+	-

Category Virus

Realm	Riboviria
Order	Nidovirales
Suborder	Cornidovirineae
Family	Coronaviridae
Subfamily	Coronavirinae
Genus	Betacoronavirus
Subgenus	Sarbecovirus
Species	Severe acute respiratory syndrome-related coronavirus
Individuum	SARS-CoV SARS-CoV_PC4-227 SARSr-CoV_BtKY72 SARS-CoV-2/X1/Human/2019/Wuhan_XYZ12345

Classification: Virus Taxonomy

Severe acute respiratory syndrome-related coronavirus: Species & its Viruses

Gorbalenya AE, Baker SC, et al, bioRxiv preprint doi: https://doi.org/10.1101/2020.02.07.937862 Coronavirus Study Group

Prognostic Classification Systems for MDS & CMML 1997-2013

	Blasts	Cyto	Hgb	Plts	ANC	Age	RBC txn	PS
IPSS	+	+	+	+	+	+		
WPSS	+1	+	+				+2	
MDA-LR	+	+	+	+		+		
MDAS	+	+	+	+	+ ³	+	+	+
FPSS	+(PB)	+					+	+
CPSS⁴	+	+	+		+ ³		+2	
IPSS-R ⁵	+	+	+	+	+	+		+

¹ WHO MDS subtype

² RBC transfusion dependency can be substituted by hemoglobin (Hgb) level

³ Leukocytosis

⁴ CMML: FAB and WHO MDS subtypes

⁵ Plus other variables: LDH, ferritin, β 2-microglobulin, fibrosis

Jonas & Greenberg, 2015

Revised International Prognostic Scoring System (IPSS-R) Cytopenias, Cytogenetics, Marrow blasts

Greenberg et al, IWG-PM, Blood 2012, n=7012

Verv low

High

Very high

10

10

12

12

- Low Intermediate

t-MDS & IPSS-R: Clinical Outcomes

Ok CY et al, Leukemia 28:185, 2014; n=411 (MDA & MGH) MDS: Post-Allogeneic HSC Transplant Outcome: OS Relation to Pre-Transplant IPSS-R Risk Category

GITMO study, n=519, Della Porta et al, Blood 2014

MDS mutations across pathways

Papaemmanuil et al NEJM 2011

Mutation Impact on Survival in MDS --additive to IPSS-R categories*

*TP53, ASXL1, RUNX1, EZH2, ETV6 Bejar et al, Haematologica 2014

LFS Relative to Number of Oncogenic Mutations Papaemannuil et al, Blood 2013; n= 595

Genomic population studies identify molecular prognostic markers

Patient Number	Authors	Year	Prognostic genes in multivariate model
439	Bejar et al.	2011	ASXL1, ETV6, EZH2, RUNX1, TP53
738	Papaemmanuil et al.	2013	EZH2, DNMT3A, SF3B1, SRSF2, RUNX1, TET2, TP53
944	Haferlach et al.	2014	ASXL1, KRAS, LAMB4, NPM1, PRPF8, RUNX1, TP53
508	Nazha et al.	2017	CBL, NRAS, TP53
685	Tefferi et al.	2018	ASXL1, SF3B1, RUNX1

Post Allo-Transplant Clinical/Molecular Model

Della Porta et al, J Clin Oncol '16, GITMO, n=401 MDS/AML-MRC 5 Independent Predictors including *ASXL1,RUNX1,TP53* mutations

MDS Classification: Project update

- Biologic variables needed to complement clinical features
 - Cytogenetic abnormalities in only ~50% MDS patients
 - Numerous mutational subtypes often with low incidence
 - Multiple co-mutations influencing clinical outcomes
- Robust integrated clinical-molecular database and sequencing program required
 - IPSS-R/Molecular project through the IWG-PM under the aegis of the MDS Foundation, n = 3000+ samples
 - Sequencing @ Memorial Sloan Kettering—*E Papaemmanuil, E Bernard*
 - Coordinating Committee: Bejar, Cazzola, Ebert, Greenberg, Hellstrom, Malcovati, Ogawa

International Working Group for the prognosis of MDS 13 countries | 25 centers

Survival Impact of Mutant Driver Numbers

E Bernard et al, for IWG-PM, MDS Fndn Symposium, ASH 2018

Long tail of gene frequency with co-mutators

E Bernard et al, for IWG-PM, MDS Fndn Symposium, ASH 2018

MDS Mutational Analyses:

Haferlach at al Leukemia 2014 Papammanuil et al Blood 2013

Incorporation of SF3B1 status in WHO 2016

MYELOID NEOPLASIA

SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts

Luca Malcovati,^{1,2} Mohsen Karimi,³ Elli Papaemmanuil,⁴ Ilaria Ambaglio,^{2,5} Martin Jädersten,³ Monika Jansson,³ Chiara Elena,^{1,2} Anna Gallì,² Gunilla Walldin,³ Matteo G. Della Porta,^{2,5} Klas Raaschou-Jensen,⁶ Erica Travaglino,² Klaus Kallenbach,⁷ Daniela Pietra,² Viktor Ljungström,⁸ Simona Conte,³ Emanuela Boveri,⁹ Rosangela Invernizzi,^{5,10} Richard Rosenquist,⁸ Peter J. Campbell,⁴ Mario Cazzola,^{1,2} and Eva Hellström Lindberg³

Figure 2. Relationship between *SF3B1* mutant allele burden and proportion of ring sideroblasts. Values for percentage of ring sideroblasts are grouped here in 3 arbitrary categories: < 15% (n = 183), 15% to 50% (n = 85), and > 50% (n = 57). Data are shown in a box plot depicting the smallest and largest observation (lowest and highest horizontal line, respectively), lower and upper quartile with median value (box), and outliers (dots).

<section-header>

WHO 2016 MDS-RS:

more than 15% ringed sideroblasts

or more than 5% of ringed sideroblasts and SF3B1 mutation

Malcovati et al Blood 2011 Papaemmanuil et al NEJM 2011

mSF3B1 Outcome Shift with Co-Mutators

E Bernard et al, for IWG-PM, MDS Fndn Symposium, ASH 2018

TP53 Allelic State Shapes 1º MDS Clinical Outcomes 68% multi-hit/bi-allelic m*TP53*

TP53 Allelic State Impacts IPSS-R Risk Group Survival Outcomes

Bernard et al for IWG-PM, ASH2019 #675 Patient TP53 Status: 368 mutated, 2780 Wild-type

TP53 Allelic State Shapes Clinical Outcomes in Therapy-Related MDS & HMA Response

Impact of HMA Therapy

Bernard et al for IWG-PM, ASH 2019, #675

MDS Molecular and Clinical Classification Summary

- Better defined:
 - Molecular heterogeneity
 - Mutations: critical nature of allele status, number and co-mutators
 - Impact on survival, AML evolution, HMA responses
 - Both p- and TR-MDS evaluated
- IPSSR-Molecular classification project progressing
 - Genotype-Phenotype associations for clinical subtypes
 - Identifying VUSs as now being pathogenic
 - Prognostic classification
 - Ongoing analysis of potential therapeutic targets
 - Other features to be integrated (e.g., gene expression)