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Myelodysplastic syndromes:
what does precision medicine look like?

* Assess diagnosis

* (Define pathogenesis of the disease)
* Define the natural history of disease

* Define response to therapy (and mechanism of
response for specific therapies?)

 Determine duration or intensity of therapy
* Determine choice of therapy

* Be a target for therapy



Diagnosis of MDS: morphology +
cytogenetic abnormalities

* Numerical chromosomal los
or gains

* Large interstitial deletio
7q-, 20qg-, 17p)

* Translocations [1(5;12)
t(3:21)]

* Unbalanced translo
* Flow cytometry

* Molecular st
expressio
epigeneti
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Somatic gene mutationsin patients with MDS
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What is my diagnhosis?
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Clinical Effect of Point Mutations in Myelodysplastic

Syndromes

Table 2. Hazard Ratios for Death in a Multivariable Model.*
Hazard Ratio
Risk Factor (95% Cl) P Value
Age =55 yrvs. <55 yr 1.81 (1.20-2.73) 0.004
IPSS risk group
Intermediate-1 vs. low 2.29 (1.69-3.11) <0.001
Intermediate-2 vs. low 3.45 (2.42-4.91) <0.001
High vs. low 5.85 (3.63-9.40) <0.001
Mutational status
TP53 mutation present vs. absent 2.48 (1.60-3.84) <0.001
EZH2 mutation present vs. absent 2.13 (1.36-3.33) <0.001
ETV6 mutation present vs. absent 2.04 (1.08-3.86) 0.03
RUNX1 mutation present vs. absent 1.47 (1.01-2.15) 0.047
ASXL1 mutation present vs. absent 1.38 (1.00-1.89) 0.049

* The model was generated from a stepwise Cox regression model that included
the International Prognostic Scoring System (IPSS) risk category (based on the
percentage of blasts in bone marrow, the karyotype, and the number of cyto-
penias [see Table 2 in the Supplementary Appendix]), age, sex, and mutation
status for genes that were mutated in 19 or more of the 428 samples for which
the IPSS classification was recalculated. Age was included in the analysis as a
categorical variable on the basis of a best-split algorithm showing a significant
difference in overall survival between patients less than 55 years of age and
those 55 years of age or older (see Table 8 in the Supplementary Appendix).
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LETTERS

Inactivating mutations of the histone methyltransferase
gene EZH?2 in myeloid disorders

Thomas Ernst!-#11, Andrew ] Chase!*®!1 Joannah Score!2, Claire E Hida]gn—ﬂurrisu, Catherine Bryantu,
AmyV Jones!2, Katherine Waghnrnu, Katerina Zoi?, Fiona M Ross!2, Andreas Reiter®, Andreas Hochhaus?,
Hans G Drexler®, Andrew Duncombe’, Francisco Cervantes®, David Oscier?, Jacqueline Boultwood!?,
Francis H Grand!? & Nicholas C P Cross!»?
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Figure 2 Survival and expression analysis. (a,b) Kaplan-Msier analysis showing overall survival {a)
and prograssion-frea survival (b) of the 134 individuals with MDS/MPM for whom follow-up data
was available (CMML, n=77; aCML, n = 44; MDSMPN-LU, n= 13). Moneg of the individuals with
EZHZ mutations in this analysis had cytogenetically visible abnormalities of chromosome 7. (e) The
survival of individuals with homozygous mutations was shorter than those with heterozygous EZHZ
mutations, although the differenca was not significant (P = 0.089).
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Prognostic Significance of ASXL1 Mutations in Patients
With Myelodysplastic Syndromes

Felicitas Thol, Inna Friesen, Frederik Damm, Haiyang Yun, Eva M. Weissinger, Jiirgen Krauter,
Katharina Wagner, Anuhar Chaturvedi, Amit Sharma, Martin Wichmann, Gudrun Gohring,
Christiane Schumann, Gesine Bug, Oliver Ottrmann, Wolf-Karsten Hofrmann, Brigitte Schiegelberger,
Michael Heuser, and Arnold Ganser
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Purpose
To study the incidence and prognostic impact of mutations in Additional sex comb-like 1 (ASKL 7}
in & large cohort of patients with myelodysplastic syndrome (MDS).

Patients, Materials, and Methods

Owerall, 193 patientz with MDS and 65 healthy volunteers were exarmined for ASXLT mutatons by
direct sequencing and for expression levels of ASXL 7. The prognostic impact of ASXLT mutation and
expression levels was evaluated in the context of other clinical and molecular prognostic markers.

Results

Mutations in ASX 1 occurred with a frequency of 20.7% i MDS (n = 40 of 193) with 70% [n = 28!
of mutations being frarmeshift mutations and 30% (n = 12) being heterozygous point mutations leading
to translational changes. ASXL T mutations were correlated with an intermediate-risk karyotype
[P = 002} but not with other clinical parameters. The presence of ASXLT mutations was associated
with a sharter overall survival for frameshift and point mutations combined (hazard ratio [HR], 1.744;
95% CI, 1.08 to 2.82; P = .024} and for frameshift mutations only (HR, 2.06; 95% CI, 1.21 to 3.50;
P = 008). ASXL1 frameshift mutations were associated with a reduced time to progression of acute
myelod leukermnia (AML; HR 2.35; 95% Cl, 1.17 to 4.74; P = .017). In multvanate analysis, when
considering karyotype, transfusion dependence, and IDHT mutation status, ASXLT frameshift muta-
tions remained an independent prognostic marker in MDS {overall survival: HR, 1.85; 95% Cl, 1.03 to
3.34; P = 040; tme to AML progression: HR, 2.39; 95% Cl, 1.12 to 5.09; P = .024).

Conclusion

These results suggest that ASX 7 mutations are frequent molecular abemrations in MDS that
predict an adverse prognostic outcome. Screening of patients for ASX] 7 mutations might be
useful for clinical risk stratification and treatrment decisions in the future.

J Clin Oncol 29:2493-2506. @ 2011 by Amenican Society of Clinical Oncology



Effect of DNMT3A mutations on MDS outcome
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Clinical Significance of SF3B1 Mutations
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MYELOID NEOPLASIA

TET2 mutations predict response to hypomethylating agents in
myelodysplastic syndrome patients
Rafael Bejar," Allegra Lord,? Kristen Stevenson,® Michal Bar-Natan,* Albert Pérez-Ladaga,’ Jacques Zaneveld,®> Hui Wang,®

Bennett Caughey,’ Petar Stojanov,® Gad Getz,® Guillermo Garcia-Manero,” Hagop Kantarjian,” Rui Chen,®
Richard M. Stone,* Donna Neuberg,® David P. Steensma,* and Benjamin L. Ebert™®

"Division of Hematology and Oncology, University of Califomia San Diego Moores Cancer Center, La Jolla, CA; Division of Hematology, Brigham and
Women's Hospital, Harvard Medical School, Boston, MA; ®Department of Biostatistics and Computational Biology and *Department of Medical Oncology,
Division of Hematological Malignancies, Dana-Farber Cancer Institute, Boston, MA; "Department of Molecular and Human Genetics, Baylor College of
Medicine, Houston, TX; ®Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; and "Department of Leukemia, University
of Texas MD Anderson Cancer Center, Houston, TX

¢ Higher abundance TET2
mutations are associated
with increased response to
hypomethylating agents,
particularly when ASXL1
is not mutated.

* TP53and PTPN11
mutations are associated
with shorter overall survival
after hypomethylating agent
treatment, but do not predict BLOOD, 23 OCTOBER 2014 - VOLUME 124, NUMBER 17
response.




TET2 Mutations Sensitize MDS Clones to Azanucleosides

« 213 pts rcving azanucleosides (100 LR-MDS)

* NGS analysis of 40 myeloid genes to assess
relation to response & OS

« Clonal TETZ2 mutations predicted response
(OR 1.99, P=.036) when subclones unlikely to
be detected by Sanger sequencing
(VAF<10%) were treated as wild-type (WT).

» Response rate highestin TET2 mutant
patients without ASXL1 mutations (OR 3.65,
P=.009).

« Mutant TP53 (HR 2.01, P=.002) associated
with shorter OS but not drug response

OS by TP53 Mutation Status
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Response to HMA Treatment by Mutational Status

Institution Overall Response
Mutant WT (%)

GFM 86 TET2 11/13 (85)* 34/73(47) 0.01

Taussig 388 DNMT3A,TET2 12/28(64) 21/60(35) 0.01
(#3461a) . IDH1/2
DNMT3A 6/7 (86)  33/81(41) 0.02
TET2 12/18 (67) 27/70(39) 0.03
ASXL1 11/13(85)  14/37 (38) 0.003
OSUA (#944a) 46 DNMT3A 6/8 (75) , 13/38(34) _ 0.05
*includes mMCR in ORR.

“AML pts treated with decitabine. ltzykson R, et
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Myelodysplastic syndromes:
what does precision medicine look like?

* Assess diagnosis
* (Define pathogenesis of the disease)
* Define the natural history of disease

*Define response to therapy

 Determine duration or intensity of therapy
 Determine choice of therapy
* Be a target for therapy
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Integrative Genomics Identifies the Molecular
Basis of Resistance to Azacitidine Therapy
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A Inflammatory Response Immune Response B AZA immune genes (Li et al, 2014)
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Figure 4. AZA Therapy Induces Pro-inflammatory Pathways In Vivo in Responders
(A) GSEA plots illustrating strong enrichment for inflammatory and immune response pathways in vivo at C8d28 compared with pre-treatment in AZA responders.
NES and FDR for the gene sets are indicated.

(B) GSEA plot showing enrichment for a previously identified set of immune genes whose expression is induced by AZA treatment (Li et al., 2014).

(C) Significant enrichment for a number of immune- and inflammation-related pathways upregulated in vivo at C6d28 in AZA responders, as identified by IPA.

rishnan et al Cell Reports 2017



Clinical Evolution and Bone Marrow Failure in Lower Risk M
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OPEN

Targeted resequencing analysis of 31 genes commonly mutated
in myeloid disorders in serial samples from myelodysplastic

syndrome patients showing disease progression

Leukemia (2016) 30, 247-250; doi:10.1038/leu.2015.129 (>1%) mutated genes in myeloid malignancies (Supplementary
Table 2). Dual-barcoded TSCA libraries were sequenced on an
lllumina MiSeq platform, and variants were annotated and filtered

The myelodysplastic syndromes (MDS) are clonal disorders of the using lllumina VariantStudio (Supplementary Methods). The

A Pellagatti’, S Roy', C Di Genua', A Burns®, K McGraw?, S Valletta',
MJ Larrayoz®, M Fernandez-Mercado’, J Mason?, S Killick®,

C Mecucci®, MJ Calasanz®, A List®, A Schuh? and J Boultwood'
'LLR Molecular Haematology Unit, Nuffield Division of Clinical
Laboratary Sciences, Radcliffe Department of Medicine,

University of Oxford, Oxford, UK;
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Can epigenetic profiles help explain biology and predic
clinical outcome in low-risk MDS?
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Progressive MDS presents with a higher mutational burden at diagno

(A) Stable MDS Progressive MDS

at baseline
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Epigenetic differences at diagnosis correlate with
disease progression in low risk MDS

A\

Unsupervised
analysis Supervised analysis
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Epigenetic distances increase with disease progression
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Progressive MIDS shows greater epigenetic variability
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SUMMARY |

v Low-risk MDS is epigenetically heterogeneous

v" DNA methylation profiles and mutational burden at
diagnosis correlate with clinical evolution

v These differences have the potential to be harnes
clinical biomarkers predictive of outcome

v" Progression of low-risk MDS to greater marro
correlates with increased epigenetic variabili
reflect the appearance of competing clon
emergence of a single dominant clone

1_JSYLVESTER



Myelodysplastic syndromes:
what does precision medicine look like?

* Assess diagnosis

* (Define pathogenesis of the disease)
* Define the natural history of disease
* Define response to therapy

* Determine duration or intensity of therapy

*Determine choice of therapy
* Be a target for therapy



del(5g) MDS: caused by gene haploinsufficiency

Loss of a micro RNA and thrombocytosis
Starczynowski et al. Nat Med. 2010 Jan;16(1):49-
58.

miR-145

Coordinate loss of a microRNA and protein-
_’ . -~
(miR-146a) g

coding gene cooperate in the pathogenesis of
5g- syndrome
Kumar et al. Blood. 2011 Oct 27;118(17):4666-73

Activation of p53 and apoptosis of immature
red cells

Barlow et al. Nat Med. 2010 Jan;16(1):59-66
Pellagatti et al. Blood. 2010 Apr 1;115(13):2721-3
Dutt et al. Blood. 2011 Mar 3;117(9):2567-76

— RPS14

Haploinsufficiency of RPS14
phenocopies the disease in normal

hematopoietic progenitor cells
Ebert et al. Nature. 2008;451(7176):335-9

Lenalidomide triggers ubiquitination and degrad
del(5q) cells have one copy of CSNK1A1; the



Spliceosome gene mutations in myeloid neoplasms

a MDS without RS RARS / RCMD-RS
(N =155) (N =73)
ZRSR2 (1.4%)
No mut (15.
Dup (2.7%)
FaB1 (6.5%) SF3B1 (75.3%)

SF3A1 (1.3% )
PRPF40B (1.9%)
U2AF65 (0.6%)

SF1 (1.3%)
Dup 6 o001 U2AF65 (1.1%) SF3A1 (1.1% )
AML/MDS De novo AML MPN
(N = 62) (N = 151) (N = 53)
SRSF2 (0.7%) U2AF35 (1.9%) SRSF2 (1.9%)
U2AF35 (1.3%) __ SF3B1 (2.6%) ZRSR2 (1.9%)
SF3AT (0.7%)
0.79%) <, N SF1 (1.9%)
, Dup (0.7%)
>F3B1 (4.8%) SF3A1
(1.6%)
PRPF408B
(1.6%) \ ’
No mut (74.2%) No mut (93.4%) No mut (90.6%)
b M rarsrevo-rs [l vos without Rs [l cvme I AmumDs De novo AML MPN
SF3B1
SRSF2
U2AF35 |
ZRSR2
SFaA1 | |
PRPF40B I
U2AF65 | |
SF1

Yoshida et al. Nature. 2011 478:64-9



> +§ M Luspatercept for the treatment of anaemia in patients
~ with lower-risk myelodysplastic syndromes (PACE-MDS):
a multicentre, open-label phase 2 dose-finding study with

long-term extension study

Lhwe Platzbecker®, Ulrich Germing®, Katharina 5 Gatze®, Philipp Kiewe™, Karin Mayer®, Jérg Chromik™, Markus Radsak®, Thomas Wolff™,
XinoshaZhang, Abderrahmane Laademn, Matthew L Sherman, Kenneth M Attie, Aristoteles Giagounidis™

Dose Finding Phase Extension
[n=58]

[PACE

Eligibility

Low/Int-1 IPSS
Hgb < 9g/dl - o
ESA failure or
Epo >500 muU/ml

Week: O

Principal Objective: LTB: Lowtransfusion burden (<4U/8wk, Hb<10): Hb increase =
transfusion burden (24U/8wk): 4U or 50% decrease U/8wk



MEDALIST: Phase 3 Randomized Double-blind Study of
Luspatercept vs Placebo in Transfusion-Dependent LR-
MDS With Ring Sideroblasts [ACE-536-MDS-001}

4 Previous Release | Next Release » e

—=3'ACCELERON
=

Jun 1, 2017

Celgene and Acceleron Complete Target Enroliment in the MEDALIST and
BELIEVE Phase 3 Studies of Luspatercept in Myelodysplastic Syndromes
and Beta-Thalassemia

- Companies expect to report top-line results from the Phase 3 studies in mid-2018 -

SUMMIT, N.J. & CAMBRIDGE, Ma.--(BUSINESS WIRE)-- Celgene Corporation (NASDAQ: CELG) and Acceleron Pharma Inc. (NASDAQ: XLRN) today announced
that they have completed target enrollment in the MEDALIST and BELIEVE Phase 3 studies of luspatercept in patients with myelodysplastic syndromes (MDS) and
beta-thalassemia. The Companies expect to report top-line results from the clinical trials in the middle of 2018. Luspatercept is being developed to treat a range
of hematologic diseases including MDS, beta-thalassemia, and myelofibrosis as part of a global collaboration between Acceleron and Celgene.

Eligibility: Non-del(5q) MDS with >15% RS, VL-Int. IPSS-R,0 2U P
Key Exclusions: Priortreatment with IMIDs, azanucleosides or IS
Stratification: RBC transfusion burden (< 6 vs >6 U/8wk), IPSS
Primary end-point: TransfusionIndependencex > 8 weeks



MyeloaysplasTiC syndromes:
what does precision medicine look like?
How has it evolved?

* Assess diagnosis

* (Define pathogenesis of the disease)
* Define the natural history of disease
* Define response to therapy (all or specific therapi
* Determine duration or intensity of therapy

* Determine choice of therapy

*Be a target for therapy



Cancer Cell

Leukemic IDH1 and IDH2 Mutations Resultin a
Hypermethylation Phenotype, Disrupt TET2 Function,
and Impair Hematopoietic Differentiation

Maria E. Figueroa,’'? Omar Abdel-Wahab,**"? Chao Lu,*'* Patrick 5. Ward,* Jay Patel,? Alan Shih,>* Yushan Li
MNehiz Bhagwsat,? Aparns Vesenthebumear,® Hugo F. Fernandez @ Martin S. Tallman,® Zhuoedn Sun, Kisty Wolniak,®
Justing K. Peeters,® Wei Liu," Sung E. Choe, ™ Valeria L Fantin,’ Elisabeth Paietta,” Bob Lowenbeng,?
Jonathan D. Licht® Lucy A Godley, Ruud Delwel® Peter J.M. Valk,® Craig B. Thompson,+* Ross L. Levine 25°
and Ari Meinick™*

"Divison of Hamaiologqy Oncology, Wed Conel Meadical Calage, Mew York, WY 10065, LISA

THumman Oncolody and Pafogenasss Progeam

Abemant epigenstic programming (s & hallmark of cancer and yet very little s nown conceming the mechantams through
which this occura. Here we demonstrate that leukemic neomorphic mutations of the dtrate metabollsm genes IDHT and
IDH2 that generate the abemrant metabolite 2HG induce DNA ypemethylation and impair differentiation in hematopoletic
cells. These effects sre caused in part throwgh inhibition of TET2, a DNA demethylase enzyme slao mutsted in leukemia.
1DH1/2- and TETZ-mutant primary AML cells displayed a similar defect in epigenstic programming conssting of global hy-
pemethiyviation and agen & apecific methylationsignature. This work | dentifies |DH1/2- and TETZ-mutant leukemias asa bio-
logically distinct disease sulbtype, and links cancer metabo lizm with eplgenetic control of gene expregaion,

Cancer Call 18, 553-587, Decemiber 14, 2010 &2010 Beevier Inc. 553



Regular Article

CLINICAL TRIALS AND OBSERVATIONS

Enasidenib in mutant IDH?2 relapsed or refractory acute

myeloid leukemia

Eytan M. Stein,'?* Courtney D. DiNardo,®* Daniel A. Pollyea,* Amir T. Fathi,>¢ Gail J. Roboz,27 Jessica K. Altman,®
Richard M. Stone,® Daniel J. DeAngelo,? Ross L. Levine," lan W. Flinn,'® Hagop M. Kantarjian,® Robert Coliins,"’

Manish R. Patel,'® Arthur E. Frankel,"" Anthony Stein,'® Mikkael A. Sekeres,’* Ronan T. Swords,'® Bruno C. Medeiros,'®
Christophe Willekens,”'® Paresh Vyas,'??® Alessandra Tosolini,”' Qiang Xu,?' Robert D. Knight,?' Katharine E. Yen,?*
Sam Agresta,22 Stephane de Botton,'”'®T and Martin S. Tallman'=T
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SRSF2 Mutations Contribute to Myelodysplasia
by Mutant-Specific Effects on Exon Recognition

Wildtype SRSF2 P95H
SRSF2 Mutation

* | eukopenia

* Anemia

e Morphologic
Dysplasia

eNormal
blood
production

Normal
Splicing F ,- Global Exon
’ Exclusion

EZH2 mRNA
degradation



E7107 splicing inhibitor

/ Srsf2 P95H mutation

@® GFP-tagged leukemia cells
Y E7107 splicing inhibitor

* k&
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e 22- M
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Interfering with RNA splicing

S AR i

abarrant protein products

Therapeutic targeting of splicing in cancer

Stanley Chun-Wei Lee! & Omar Abdel-Wahab!2



MyeloaysplasTiC syndromes:
what does precision medicine look like?
How has it evolved?

* Assess diagnosis

* (Define pathogenesis of the disease)

* Define the natural history of disease

* Define response to therapy (all or specific therapi

*Determine duration or intensity of t

 Determine choice of therapy
* Be a target for therapy
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APR-246 (PRIMAMET) Restores WTp53 Function

a _ X b

Restoration of p53
conformation

Khoo et al., Nature Reviews Drug Discovery; 20

Phase I/Il study of APR-246 with Aza in TP53 mutant MDS

Response
Continue
APR + AZA

TP53 mutant [ APR d1-41v

Week: O




TP53 mutations assoc. w CTLA4 & PDL1 expressio
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ORIGINAL ARTICLE

Mutation Clearance after Transplantation
for Myelodysplastic Syndrome

E.]. Duncavage, M.A. Jacoby, G.S. Chang, C.A. Miller, N. Edwin, J. Shao, K. Elliott,

J. Robinson, H. Abel, R.S. Fulton, C.C. Fronick, M. O’Laughlin, S.E. Heath, K. Brendel,
R. Saba, L.D. Wartman, M.J. Christopher, I. Pusic, J.S. Welch, G.L. Uy, D.C. Link,

J.F. DiPersio, P. Westervelt, T.J. Ley, K. Trinkaus, T.A. Graubert, and M.J. Walter

ABSTRACT

BACKGROUND

Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for
patients with myelodysplastic syndrome (MDS). The molecular predictors of disease
progression after transplantation are unclear.

METHODS

We sequenced bone marrow and skin samples from 90 adults with MDS who under-
went allogeneic hematopoietic stem-cell transplantation after a myeloablative or re-
duced-intensity conditioning regimen. We detected mutations before transplantation
using enhanced exome sequencing, and we evaluated mutation clearance by using
error-corrected sequencing to genotype mutations in bone marrow samples obtained
30 days after transplantation. In this exploratory study, we evaluated the association
of a mutation detected after transplantation with disease progression and survival.
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A Reduced-Intensity Conditioning, No Progression

B Myeloblative Conditioning, No Progression
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Myelodysplastic syndromes

-key questions to address-

« What is the basis for the impaired differentiation seen in MDS patient
* What accounts for the increased cell death in MDS bone marrow?

 What is the basis for the clonal dominance of MDS stem cells over t
normal HSCs?

* What accounts for the progressive cytopenias in MDS?
* Why is lenalidomide so effective in RBC transfusion dependent 5
* How do 5-azacytidine and decitabine work in MDS?

« How much of the disease relates to aberrant immunity and
microenvironment?

Are there good targets for alloreacti
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