Hypomethylating agents in MDS

Pierre Fenaux
Department of hematology and immunology
Hôpitaux St Louis, R Debré, Avicenne
Université de Paris
GFM
Hypomethylating agents in MDS

- Practical use of HMAs in MDS
- Perspectives
Hypomethylating agents in MDS

- Practical use of HMAs in MDS
- Perspectives
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
Comparative analysis between azacitidine and decitabine for the treatment of myelodysplastic syndromes

- 300 patients, 203 azacitidine and 97 decitabine.
- Propensity-score matching yielded 97 patient pairs.

Fig 2. Comparison of overall survival between azacitidine and decitabine in the propensity score-matched cohort among patients <65 years of age (A) and ≥65 years of age (B).
Comparison of 7-day azacitidine and 5-day decitabine for treating myelodysplastic syndrome

Je-Hwan Lee · Yunsuk Choi · Sung-Doo Kim · Dae-Young Kim · Jung-Hee Lee · Kyoo-Hyung Lee · Sang-Min Lee · Su-Hee Cho · Won-Sik Lee · Young-Don Joo

- 75 DEC 5 days, 74 AZA 7 days
- Same response and OS
- Grade 3 or higher neutropenia occurred more frequently with DEC-5d (79.6 %) than with AZA-7d (72.2 %) (P=0.040)
- AZA-7d associated with higher survival rates than DEC-5d in patients with poor performance status.
• 1392 MDS (decitabine, 768; azacitidine, 624)
• no differences regarding CR, RBC-TI
• When compared with BSC, azacitidine significantly improved OS and time to AML, but not decitabine
• In patients with high IPSS or older than 75 years, treatment with azacitidine was a favorable factor, whereas decitabine showed no advantage.
Long-term survival of older patients with MDS treated with HMA therapy without subsequent stem cell transplantation

Amer M. Zeidan,1,2 Maximilian Stahl,1,2 Xin Hu,2 Rong Wang,2,3 Scott F. Huntington,1,2 Nikolai A. Podoltsev,1,2 Steven D. Gore,1,2 Xiaomei Ma,2,3 and Amy J. Davidoff4

B

AZA

DEC
Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence

Aziz Nazha, MD1, Mikkael A. Sekeres, MS, MD1, Rafael Bejar, MD, PhD2, Michael J. Rauh, MD, PhD3, Megan Othus, PhD4, Rami S. Komrokji, MD5, John Barnard, PhD1, Cameron B. Hilton1, Cassandra M. Kerr, MS1, David P. Steensma, MD6, Amy DeZern, MD7, Gail Roboz, MD8, Guillermo Garcia-Manero, MD9, Harry Erba, MD, PhD9, Benjamin L. Ebert, MD, PhD9,11, Jaroslaw P. Maciejewski, MD, PhD1}

\textbf{N=433}
Response rates higher with TP53 mutations than with wild-type TP53

Median survival 12.7 months with TP53 mutations and 15.4 months with wild-type TP53 (P=0.79)
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS, and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
AZA 001 trial in higher risk MDS: Overall survival: azacitidine vs CCR (ITT population) (Lancet Oncol, 2009)

Log-Rank $p=0.0001$

HR $= 0.58$ [95% CI: 0.43, 0.77]

Deaths: AZA = 82, CCR = 113

Difference: 9.4 months
Median survival 13.4 months for azacitidine-treated patients and 12.2 for patients under CCT (P = 0.41)

in patients with chromosome 7 abnormalities, trend toward a better survival was observed in azacitidine-treated patients (median survival 13.3 compared with 8.6 for CCT (P = 0.08)
CORRESPONDENCE

Effectiveness of azacitidine for the treatment of higher-risk myelodysplastic syndromes in daily practice: results from the Dutch population-based PHAROS MDS registry
Azacitidine in the ‘real-world’: an evaluation of 1101 higher-risk myelodysplastic syndrome/low blast count acute myeloid leukaemia patients in Ontario, Canada

• 24.7% received AZA for seven consecutive days, 12.4% for six consecutive days and 62.9% by 5-2-2

• actuarial median survival 11.6 months for the entire cohort and 18.0 months for those receiving at least 4 cycles
Long-term survival of older patients with MDS treated with HMA therapy without subsequent stem cell transplantation

Amer M. Zeidan,1,2 Maximilian Stahl,1,2 Xin Hu,2 Rong Wang,2,3 Scott F. Huntington,1,2 Nikolai A. Podolsev,1,2 Steven D. Gore,1,2 Xiaomei Ma,2,3 and Amy J. Davidoff1,4

- **n= 1187 HMA**
- **median OS for the 1187 patient cohort 14 months**
- **5-year OS probability was 8% (95% CI, 7%-10%).**
Allo SCT remains the only curative treatment in higher risk MDS
(Platzbecker, BBMT, 2012)

Median follow-up of 20 months
3-year OS was 39% for HCT and 7% for 5-aza
Survival gain in higher risk patients with a donor

![Graph showing overall survival over months from inclusion with data points for HLA-matched donor and no HLA-matched donor.]

No. at risk:
- HLA-matched donor: 112, 85, 63, 50, 39, 33, 23, 14, 8, 5
- No matched donor: 50, 29, 21, 15, 8, 6, 3, 2, 0, 0

Leukemia 2015. Robin
AZA in MDS/AML post MPD (S Thépot, Blood, 2010)

- 54 patients with MDS or AML post myeloproliferative disorder (in the French ATU program)

- 52% responses, with reversal to features of MPD (polycythemia, thrombocytopenia) in one half of responders
Azacitidine in the treatment of therapy related myelodysplastic syndrome and acute myeloid leukemia (tMDS/AML): A report on 54 patients by the Groupe Francophone Des Myelodysplasies (GFM)

Cecile Ballya,b, Sylvain Thépota,b, Bruno Quesnela,c, Norbert Veya,d, Francois Dreyfusa,e, Jehane Fadlallahb, Pascal Turlurea,f, Stephane de Bottona,f, Caroline Dartigeasa,h, Benoit de Renzisa,i, Raphael Itzyksona, Pierre Fenauxa,b, Lionel Adèsa,b,*

![Graph showing overall survival over time with a p-value of 0.0005](image)

Marrow blast percentage had no significant impact. By comparison with de novo MDS/AML treated in the same program, t-MDS/AML had a similar response rate (38\% vs 45\% in de novo MDS/AML, \(p = 0.53 \)), but significantly shorter OS (2 year OS of 14\% vs 33.9\%, \(p = 0.0005 \)). However, in a multivariate analysis performed in all patients (de novo and therapy related cases), only complex karyotype and high IPSS, and not etiology (i.e. de novo versus therapy related), had a significant impact on OS. Nine (15\%) patients received allogeneic stem cell transplantation, 4 of whom were still alive.
AZA in lower risk MDS
(S Thépot C Gardin, Haematologica, 2016)

- 93 pts
- Mainly “purely anemic patients”

Randomized phase II trial AZA+/− EPO beta in patients CLEARLY resistant to ESAs (at least 12 weeks using 60000 U/w EPO or 250ug/w Darbepoetin)

- Transfusion independence in 19% of patients

AZA+EPO= AZA
Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia

Jean-Baptiste Fraisonb,2,1, Arsène Mekinianb,1, Eric Grignano2, Jean-Emmanuel Kahn3, Jean-Benoit Arlet2, Olivier Decaux1, Guillaume Denis5, Anne-Laure Buchdahl3, Mohamed Omouri1, Gwenola Maigne1, Achille Aoubab, Nathalie Leonb, Sabine Berthier1, Eric Liozom, Sophie Parkb, Claude Gardin2, Olivier Lortholary9, Julien Rossignol5, Pierre Fenaux6, Olivier Fainb,1, Thorsten Braun6,1

- 22 patients treated with AZA for autoimmune disorders (AID) associated with MDS/CMML
- Response of AID to Azacitidine in 19 patients (86%)
- Reduction or discontinuation of steroids and/or immunosuppressive therapy possible in 16 cases (73%).
Treatment prior to allo HSCT: Azacitididine versus intensive chemotherapy

- 163 pts (AZA, 48; ICT, 98; AZA-ICT, 17)
- Donors: siblings, 75; MUD, 88
- Conditioning: RIC, 130; MAC, 33

Graph:
- Overall Survival (probability)
- Time (days)
- AZA alone: HR = 1
- ICT alone vs AZA alone: HR = 1.41 (95% CI, 0.83 to 2.42); P = ns
- ICT–AZA vs AZA alone: HR = 3.08 (95% CI, 1.38 to 6.85); P = .006

Groupe Francophone des Myélodysplasies

Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation

T Schroeder¹, A Czibere¹,², U Platzbecker², G Bug³, L Uharek³, T Luft⁵, A Giagounidis⁶, F Zohren¹, I Bruns¹, C Wolschke⁷, K Rieger⁴, R Fenk¹, U Germing¹, R Haas¹, N Kröger¹ and G Kobbe¹

- N= 30
- up to 8 cycles azacitidine followed by DLI after every second azacitidine cycle.
- A median of three courses azacitidine (range 1–8) were administered, and 22 patients (73%) received DLI.

- Overall response rate 30%, including 7 CR (23%) and 2 PR (7%).
- 5 patients remained in CR for a median of 777 days
“Preventive” Post-transplant ASTX 727 in very high risk MDS patients: a phase II prospective study (M Robin)

Inclusion criteria
Patients aged from 18 to 70 years
MDS according to WHO with a very complex cytogenetic (according to IPSS-R) or TP 53 gene mutation

• ASTX 727 (decitabine + cedazuridine) started on day 40
• Immunosuppression stopped on day 70
• DLI started on day 100
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
AZA 001 trial: Overall survival: azacitidine vs CCR (ITT population) (Lancet Oncol, 2009)

Log-Rank p=0.0001
HR = 0.58 [95% CI: 0.43, 0.77]
Deaths: AZA = 82, CCR = 113

Difference: 9.4 months

Time (months) from randomization

Proportion surviving

15 months

24.4 months

26.2%

50.8%

Difference: 9.4 months
Practical use of HMAs in higher risk MDS

• Azacitidine or Decitabine?
• In what MDS (AML), and when to start?
• Until what age?
• Prognostic factors of response and survival?
• What regimen? For how long?
• How to evaluate response?
• How to prevent and treat side effects?
AZA 001 trial in patients older than 75 years
(Seymour J, Crit Rev Oncol Hematol. 2010)

Figure 2. Overall Survival in Patients ≥75 Years of Age: AZA vs CCR

<table>
<thead>
<tr>
<th>Time (months) from Randomization</th>
<th>AZA</th>
<th>CCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

HR: 0.48 [95% CI: 0.26, 0.89]; p = 0.0193

10.8 months
55%
15%

Proportion Surviving

at Risk

AZA: 38 31 27 14 9 3 0 0 0
CCR: 49 37 23 16 5 3 1 0 0
French patient named program of AZA (ATU)

OS did not differ from pts <80 years (p=0.6)

Median OS was 12.1 months
1 year-OS was of 50.0%
2-year-OS was of 23.2%
Results of treatment with azacitidine in patients aged ≥ 75 years included in the Spanish Registry of MDS

Leuk Lymphoma. 2013

- 107 patients ≥ 75 years from the Spanish Registry of MDS treated with AZA.
- Median age 78
- 38/94 (40%) patients achieved TI
- Median OS 18 months and 2 year OS 34%
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia

Kristen Meldi,1 Tingting Qin,1 Francesca Buchi,2 Nathalie Droin,3 Jason Sotzen,1 Jean-Baptiste Micol,3,4 Dorothée Selimoglu-Buet,3 Eriso Masala,2 Bernardino Allione,5,6 Daniela Gioia,6,7 Antonella Poloni,6,8 Monia Lunghi,6,9 Eric Solary,3 Omar Abdel-Wahab,4 Valeria Santini,2,6 and Maria E. Figueroa1

167 differentially methylated regions (DMRs) of DNA at baseline distinguished responders from nonresponders using NGS.

These DMRs were primarily localized to nonpromoter regions and overlapped with distal regulatory enhancers.
Impact Of Cytogenetics and Cytogenetic Response On Outcome In Myelodysplastic Syndromes (MDS) treated With Azacitidine (AZA). A Collaborative Study In 878 Patients

Marie Sebert¹, Rami S Komrokji, MD², Mikkael A. Sekeres, MD, MS³, Thomas Prebet, MD PhD⁴, Thomas Cluzeau, MD, PhD⁵*, Valeria Santini, MD⁶*, Alessandro Sanna⁷*, Najla H Al Ali²*, Sean Hobson⁸*, Virginie Eclauche, MD⁹*, Alan List, MD², Pierre Fenaux, MD, PhD¹⁰ and Lionel Ades, MD, PhD¹¹

* : p<0.05 compared to Normal

ASH 2014
Impact of Cytogenetics on OS (compared to NK)

<table>
<thead>
<tr>
<th>Cytogenetic</th>
<th>n</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolated del(20q)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>isolated del(5q)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Isolated trisomy 8</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Trisomy 8</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>del20q</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>isolated del(7q)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3q26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>non isolated -7/del(7)</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>monosomal</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>non isolated del(5q)/-5</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>del(17p)</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

- Better
- Worse

-1 1 4

Reference
Prognostic factors of treatment with AZA

- French ATU program 282 patients
- Validation with AZA-001 patients (n=161)

Multivariate Analysis

<table>
<thead>
<tr>
<th>Factor</th>
<th>HR [95% CI]</th>
<th>p</th>
<th>Puntuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance status</td>
<td>2.0 [1.4-2.9]</td>
<td><10⁻⁴</td>
<td>1</td>
</tr>
<tr>
<td>≥ 4 units RBC transfused/8w</td>
<td>1.9 [1.4-2.6]</td>
<td><10⁻⁴</td>
<td>1</td>
</tr>
<tr>
<td>Presence of circulating blasts</td>
<td>2.0 [1.5-2.7]</td>
<td><10⁻⁴</td>
<td>1</td>
</tr>
<tr>
<td>Cytogenetics (IPSS)</td>
<td></td>
<td><10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>1.4 [0.8-2.3]</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>3.0 [2.0-4.3]</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Grupo, de riesgo

<table>
<thead>
<tr>
<th>Grupo, de riesgo</th>
<th>Score</th>
<th>ATU (n=269)</th>
<th>AZA-001 (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Survivé médiane globale (mois)</td>
<td>Survivé médiane globale (mois)</td>
</tr>
<tr>
<td>low</td>
<td>0</td>
<td>30 (11%) NR</td>
<td>23 (15%) NR</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1-3</td>
<td>191 (71%) 15,0</td>
<td>114 (75%) 21,4</td>
</tr>
<tr>
<td>high</td>
<td>4-5</td>
<td>48 (18%) 6,1</td>
<td>15 (10%) 9,3</td>
</tr>
</tbody>
</table>

R. Itzykson et al., Blood, 2011
Long-term outcome of higher-risk MDS patients treated with azacitidine: an update of the GFM compassionate program cohort

Raphael Itzykson, Sylvain Thépot, Bruno Quesnel, Francois Dreyfus, Christian Recher, Eric Wattel, Claude Gardin, Lionel Adès and Pierre Fenaux

Figure 1. Updated Kaplan-Meier estimates of overall survival (OS) of our previously reported cohort of 282 higher-risk myelodysplastic syndromes (MDS) patients treated with azacitidine, with a median follow-up of 41.3 months. (A) Global cohort (n = 282).1 (B) Cohort according to our risk stratification: low (n = 30, median OS: 32.1 month); intermediate (int; n = 191, median OS: 15.0 months); high (n = 48, median OS: 6.1 month; log-rank test: P < 10⁻⁴).
The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidin: the GFM experience

Mathilde Lamarque, Sophie Raynaud, Raphael Itzykson, Sylvain Thepot, Bruno Quesnel, Francois Dreyfus, Odile Beyne Rauzy, Pascal Turlure, Norbert Vey, Christian Recher, Caroline Dartigas, Laurence Legros, Jacques Delaunay, Sorin Visanica, Aspasia Stamatoullas, Pierre Fenaux and Lionel Adès

Figure 1. OS according to IPSS-R score in MDS patients treated with AZA with a median follow-up time of 41.4 months.
Impact of *TET2* mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias

R Itzykson¹,¹², O Kosmider²,¹², T Cluzeau³, V Mansat-De Mas⁴, F Dreyfus⁵, O Beyne-Rauzy⁶, B Quesnel⁷, N Vey⁸, V Gelsi-Boyer⁹, S Raynaud¹⁰, C Preudhomme¹¹, L Adès¹, P Fenaux¹ and M Fontenay² on behalf of the Groupe Francophone des Myelodysplasies (GFM)

- **Mutated TET2 (p=0.04) and favorable cytogenetic risk predicted higher response rate**
- **Response duration and overall survival however, comparable in the MUT and WT groups.**

![Graph](image-url)
TP53 mutations are associated with poorer survival with azacitidine in high risk MDS

(Bally, Leuk Res, 2013)
Table 1. Outcomes of Patients with Acute Myeloid Leukemia and Myelodysplastic Syndromes (MDS) Treated with Hypomethylating Agents in Four Studies, According to TP53 Mutation Status.*

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>Patients with Mutated TP53</th>
<th>Overall Response</th>
<th>Complete Response</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mutated TP53</td>
<td>Wild-Type TP53</td>
<td>P Value</td>
</tr>
<tr>
<td>Bally et al.†</td>
<td>62 (44 MDS)</td>
<td>23 (37)</td>
<td>10 (43)</td>
<td>20 (51)</td>
<td>0.60</td>
</tr>
<tr>
<td>Bejar et al.‡</td>
<td>213 MDS</td>
<td>39 (18)</td>
<td>20 (51)</td>
<td>80 (46)</td>
<td>NS</td>
</tr>
<tr>
<td>Takahashi et al. §</td>
<td>168 MDS</td>
<td>38 (23)</td>
<td>15 (39)</td>
<td>41 (32)</td>
<td>0.13</td>
</tr>
<tr>
<td>Jung et al.¶</td>
<td>107 MDS</td>
<td>13 (12)</td>
<td>10 (77)</td>
<td>47 (50)</td>
<td>0.08</td>
</tr>
</tbody>
</table>
MYELOID NEOPLASIA

TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients

Rafael Bejar,¹ Allegra Lord,² Kristen Stevenson,³ Michal Bar-Natan,⁴ Albert Pérez-Ladaga,¹ Jacques Zaneveld,⁶ Hui Wang,⁵ Bennett Caughey,¹ Petar Stojanov,⁶ Gad Getz,⁶ Guillermo Garcia-Manero,⁷ Hagop Kantarjian,⁷ Rui Chen,⁵ Richard M. Stone,⁴ Donna Neuberg,³ David P. Steensma,⁴ and Benjamin L. Ebert²,⁶

- Higher abundance *TET2* mutations are associated with increased response to hypomethylating agents, particularly when *ASXL1* is not mutated.
- *TP53* and *PTPN11* mutations are associated with shorter overall survival after hypomethylating agent treatment, but do not predict response.
Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence

Aziz Nazha, MD1, Mikkael A. Sekeres, MS, MD1, Rafael Bejar, MD, PhD2, Michael J. Rauh, MD, PhD3, Megan Othus, PhD4, Rami S. Komrokji, MD5, John Barnard, PhD1, Cameron B. Hilton1, Cassandra M. Kerr, MS1, David P. Steensma, MD6, Amy DeZern, MD7, Gail Roboz, MD6, Guillermo Garcia-Manero, MD8, Harry Erba, MD, PhD10, Benjamin L. Ebert, MD, PhD11, Jaroslaw P. Maciejewski, MD, PhD1

N=433

Association Rules for Resistance to HMAs

ASXL1, NF1
ASXL1, EZH2, TET2
ASXL1, EZH2, RUNX1
EZH2, SRSF2, TET2
ASXL1, EZH2, SRSF2
ASXL1, RUNX1, SRSF2
ASXL1, TET2, SRSF2
ASXL1, BCOR, RUNX1
Absence of Aberrant Myeloid Progenitors by Flow Cytometry is Associated with Favorable Response to Azacitidine in Higher Risk Myelodysplastic Syndromes

Canan Alhan,1 Theresia M. Westers,1 Lieke H. van der Helm,2 Corien Feltink,1 Gerwin Huls,3 Birgit I. Witte,4 Francesca Buchi,5 Valeria Santini,5 Gert J. Ossenkoppele,1 and Arjan A. van de Loosdrech†

• presence of myeloid progenitors with aberrant immunophenotype associated with lack of response (p< 0.02).
• low pretreatment FCSS associated with better OS (p < 0.03).
• significant decrease in FCSS in patients with CR after three cycles (p < 0.006).
Practical use of HMAs in higher risk MDS

• Azacitidine or Decitabine?
• In what MDS (AML), and when to start?
• Until what age?
• Prognostic factors of response and survival?
• **What regimen?** For how long?
• How to evaluate response?
• How to prevent and treat side effects?
Study of three alternative dosing schedules of azacitidine in MDS (Lyons, JCO, 2009)

Phase II, prospective, multicenter, randomized, open-label, 3-arm trial

Screening

Day -21 to -1

Initial randomization

Cycle 1-6

AZA 5-2-2
75 mg/m² SC

AZA 5-2-5
50 mg/m² SC

AZA 5
75 mg/m² SC

Repeat cycle every 28 days

Maintenance randomization

AZA 5
75 mg/m² SC q 28 or 42 days

Lyons, ASH 2007
Intensified schedule of AZA (Adès, BJH 2016)

AZA 75 mg/m2/d 5 days every second week

- Cycle 1-4 every 2 weeks
 - AZA d1-d5
 - AZA d1-d5
 - AZA d1-d5
 - AZA d1-d5

- Cycles 5-8 every 3 weeks
 - AZA d1-d5
 - AZA d1-d5
 - AZA d1-d5
 - AZA d1-d5

- N=21
Intensified schedule of AZA

- **After 4 cycles**
 - 1 achieved CR
 - 5 PR 5 marrow CR
 - 8 stable disease without HI
 - and 1 progression

- **After 8 cycles**
 - 1 PR patient at 4 cycles achieved CR
 - 5 additional responses
 - 3 marrow CR
 - 2 CR

ORR 55%

ORR 70%
A randomized phase II trial of 5-day versus 10-day schedules of decitabine in older patients with newly diagnosed AML (Short; Lancet Hematol, 2019)

- N = 71
- ORR similar in the 5-day and 10-day arms (43% versus 40%, P=0.78).
- Median OS in the 5-day and 10-day decitabine arms was 5.5 months and 6.0 months. 1-year OS 25% in both arms (P=0.47)
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? *For how long?*
- How to evaluate response?
- How to prevent and treat side effects?
AZA-001: number of cycles of azacitidine to first response (CR, PR or HI)

Range: 1–22 cycles

50%, 2 cycles
87%, 6 cycles

Number of subjects

91 34 12 6 3 1 1 1
- 16 higher-risk MDS or AML who achieved PR (n=1) or CR (n=15) and stopped HMA therapy while in response

- median of 12 courses (range 1–24)

- Loss of response after discontinuation of therapy was rapid, with a median PFS of 4 months
Practical use of HMAs in higher risk MDS

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
AZA-001: number of cycles of azacitidine to first response (CR, PR or HI)

Range: 1–22 cycles

Cumulative probability

Time (cycles)

Number of subjects

91 34 12 6 3 1 1 1

<table>
<thead>
<tr>
<th></th>
<th>AZA n=179 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (CR+PR)</td>
<td>29</td>
</tr>
<tr>
<td>CR</td>
<td>17</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
</tr>
<tr>
<td>IWG HI</td>
<td></td>
</tr>
<tr>
<td>Major+minor</td>
<td>49</td>
</tr>
<tr>
<td>HI-E major</td>
<td>40</td>
</tr>
<tr>
<td>HI-P major</td>
<td>33</td>
</tr>
<tr>
<td>HI-N major</td>
<td>19</td>
</tr>
</tbody>
</table>
AZA-001: hematological improvement without CR or PR associated with better survival (Gore, Haematologica, 2013)

Proportion of patients surviving

Time from randomisation (months)

IWG = International Working Group; HI = haematological improvement
PR = partial response; CR = complete response

Adapted from List AF, et al. Oral presentation at ASCO 2008, Chicago, IL [abstract 7006]
Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme.

Platelet response during the second cycle of decitabine treatment predicts response and survival for myelodysplastic syndrome patients.

Hyun Ae Jung¹,², Chi Hoon Maeng³, Moonjin Kim¹, Sungmin Kim¹, Chul Won Jung¹, and Jun Ho Jang¹
Impact of Cytogenetics and Cytogenetic Response on Outcome in Myelodysplastic Syndromes (MDS) treated With Azacitidine (AZA). A Collaborative Study In 878 Patients

Marie Sebert1, Rami S Komrokji, MD2, Mikkael A. Sekeres, MD, MS3, Thomas Prebet, MD PhD4, Thomas Cluzeau, MD, PhD5*, Valeria Santini, MD6*, Alessandro Sanna7*, Najla H Al Ali2*, Sean Hobson8*, Virginie Eclache, MD9*, Alan List, MD2, Pierre Fenaux, MD, PhD10 and Lionel Ades, MD, PhD11

• CYTOGENETIC RESPONSE AND SURVIVAL

- Landmark analysis at 3 months
- Comparing achievement of Cytogenetic responses or not
 - in pts with IWG 2006 response
 - in pts without IWG 2006 response

Kaplan-Meier survival estimates

P = ns
Serial sequencing demonstrates that the response to hypo-methylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurrence.

Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Practical use of HMAs

- Azacitidine or Decitabine?
- In what MDS (AML), and when to start?
- Until what age?
- Prognostic factors of response and survival?
- What regimen? For how long?
- How to evaluate response?
- How to prevent and treat side effects?
Side effects of hypomethylating agents

• Cytopenias
 – Anemia: transfusions
 – Thrombocytopenia: transfusions
 – Neutropenia
 • G-CSF?
 • Treatment of febrile neutropenia

• Local side effects (AZA subcutaneously) (do not purge syringe, local treatments...)
Side effects of hypomethylating agents

• **Cytopenias**
 – Anemia: transfusions
 – thrombocytopenia: transfusions
 – Neutropenia
 • G-CSF?
 • Treatment of febrile neutropenia
 • Infection prophylaxis?

• **Local side effects (AZA subcutaneously)** (do not purge syringe, local treatments…)
Predicting infections in high-risk patients with MDS/AML treated with azacitidine: A retrospective multicenter study

D Merkel Am J Hemat, 2013

- 153 infectious events during 928 treatment cycles (16.5%) administered to 100 patients

- 114/153 (75%) events required hospitalization and 30 (19.6%) were fatal

- In multivariate analysis, only low Hb level, low PLT count, and unfavorable cytogenetics remained predictive of infection
Abstract #48865

Prognostic Factors of Severe Infections, and Effect of Primary Anti-Infectious Prophylaxis in MDS Patients Treated with Azacitidine (AZA). A Single Center Study On 144 Patients

Valérie Vidal¹*, Marie Sebert²*, Sylvain Thepot³*, Thorsten Braun⁴*, Claude Gardin⁵*, Sabine Brechignac⁶*, Pierre Fenaux, MD, PhD⁷ and Lionel Ades, MD, PhD⁷

• **Prophylactic treatment with levofloxacine-posaconazole**
• **During the 6 first cycles**
• **Prospective studies needed**
Side effects of hypomethylating agents

• **Cytopenias**
 – Anemia: transfusions
 – Thrombocytopenia: transfusions (+TPO agonists ?)
 – Neutropenia
 • G-CSF?
 • Treatment of febrile neutropenia
 • Infection prophylaxis ?

• **Local side effects** (AZA subcutaneously) (do not purge syringe, local treatments...)
Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy

Hagop M. Kantarjian, Francis J. Giles, Peter L. Greenberg, Ron L. Paquette, Eunice S. Wang, Janice L. Gabriole, Guillermo Garcia-Manero, Kuolung Hu, Janet L. Franklin and Dietmar P. Berger

Randomized*
\[n = 40 \]

Placebo
\[n = 13 \]
- Completed
\[n = 10 \] (77%)
- Discontinued
\[n = 3 \] (23%)
 Reasons for discontinuation:
 - Adverse event = 3 (23%)
 - (febrile neutropenia, bacteremia and endocarditis, fungal pneumonia)

Romiplostim 500 µg
\[n = 13 \]
- Completed
\[n = 8 \] (62%)
- Discontinued
\[n = 5 \] (38%)
 Reasons for discontinuation:
 - Adverse event = 2 (15%)
 - (staphylococcal sepsis, pancytopenia)
 - Consent withdrawn = 1 (8%)
 - AML progression = 1 (8%)
 - Alternative therapy = 1 (8%)

Romiplostim 750 µg
\[n = 14 \]
- Completed
\[n = 9 \] (64%)
- Discontinued
\[n = 5 \] (36%)
 Reasons for discontinuation:
 - Adverse event = 1 (7%)
 - (hypotension)
 - Consent withdrawn = 2 (14%)
 - Administrative decision = 1 (7%)
 - Other = 1 (7%)
Effect of romiplostim on median platelet counts on day 1 of each treatment cycle (left panel) and on median platelet counts at nadir during each treatment cycle (right panel).

©2010 by American Society of Hematology
Azacitidine with or without eltrombopag for first-line treatment of intermediate- or high-risk MDS with thrombocytopenia (Dickinson, Blood, 2018)

- Overall response in 20% and 35% of eltrombopag and placebo patients, respectively
Hypomethylating agents in MDS

• Practical use of HMAs in MDS

• Perspectives
Perspectives

- A new competitor to HMAs?
- New HMAs?
- Combinations?
CPX-351 (cytarabine and daunorubicin) Liposome 7+3 in Older Patients With sAML

CPX-351 significantly improves:
- Median overall survival versus 7+3 (9.56 vs. 5.95 months)
- Remission rate (47.7% vs. 33.3%; \(P = .016 \))
- Outcome after SCT
Patients with lower-risk myelodysplastic syndromes (MDS) received 300 mg CC-486 once daily for 14 days (n = 28) or 21 days (n = 27) of repeated 28-day cycles.

Median number of CC-486 treatment cycles was 7 (range 2–24) for the 14-day dosing schedule and 6 (1–24) for the 21-day schedule.

Overall response 36% of patients receiving 14-day dosing and 41% receiving 21-day dosing.
Guadecitabine (SGI-110): A Next Generation Hypomethylating Agent

- Guadecitabine is a dinucleotide of decitabine and deoxyguanosine resistant to deamination by cytidine deaminase, prolonging *in vivo* exposure to active metabolite decitabine (8-12 h decitabine exposure vs 3-4 h for decitabine IV)

![Graph showing decitabine concentrations after SC guadecitabine and 1-h IV infusion, with different guadecitabine doses (18, 36, 60, 90, 125 mg/m²).](image-url)
Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>Guadecitabine</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS</td>
<td>7.10 m</td>
<td>8.47 m</td>
</tr>
<tr>
<td>12-month survival</td>
<td>37%</td>
<td>36%</td>
</tr>
<tr>
<td>24-month survival</td>
<td>18%</td>
<td>14%</td>
</tr>
<tr>
<td>Hazard Ratio (95% CI)</td>
<td>0.97 (0.83, 1.14)</td>
<td></td>
</tr>
<tr>
<td>P value (stratified log Rank)</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

Complete Response (CR)

<table>
<thead>
<tr>
<th></th>
<th>Guadecitabine</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 (19.4%)</td>
<td>71 (17.4%)</td>
<td></td>
</tr>
<tr>
<td>Stratified p value</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

Median Time to CR (min, max):

<table>
<thead>
<tr>
<th></th>
<th>Guadecitabine</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 (1.9, 19.1)</td>
<td>4.4 (1.9, 15.1)</td>
<td></td>
</tr>
</tbody>
</table>
ASTX 727: An oral fixed-dose combination of decitabine and cedazuridine in MDS: a multicentre, open-label, dose-escalation, phase 1 study

Savona MR, Lancet Hematol, 2019

- 43 patients
- Decitabine 30 mg and 40 mg plus cedazuridine 100 mg produced mean day-5 decitabine AUCs closest to the mean intravenous-decitabine AUC
HMAs + other drugs

- « not targeted »
 - Venetoclax
 - Pevonidostat
 - Glasdegib

- « targeted »
 - IDH1 and IDH 2 inhibitors
 - APR 246

- Triple associations ?
- Myelosuppression a key factor
Conclusion

• An HMA alone probably not sufficient except in older patients
• Combinations especially before HSCT?
• CPX 351 a strong competitor of HMAs except in patients with complex monosomal karyotype?
Department of hematology and immunology, St Louis, R Debré, Avicenne hospitals
(APHP and Paris University)

Hôpital St Louis

• 7 servicios de hematologia (H Dombret, N Boissel, G Socié, B Arnulf, E Oksenhendler, P Fenaux, C Thiéblemont)
• Servicio de reanimacion (E Azoulay)
• Servicio de neumologia (A Tazi)

Hôpital Robert Debré

• Servicio de pediatria hematologica (A Baruchel)
• Unidad de tratamiento de anemia falciforme (M Benkerrou)

Hospital Avicenne

• Servicio de hematologia (C Gardin)
Groupe Francophone des Myélodysplasies

- Activates clinical trials in MDS (35 centers in France and Belgium + Switzerland,)
- Website: www.gfmgroup.org
- Online registry of French MDS cases
- Close cooperation with:
 - a patient support group
 - the International MDS Foundation
 - the European Leukemia Net