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Outline

Epigenetics: study of heritable traits independent of
underlying DNA sequence; maintenance of cell identity,
cellular response to the environment

Epigenetic abnormalities in MDS: what is their role in
disease initiation? Phenotype? Disease evolution?
Response to therapy?

Epigenetic therapies: What epigenetic-based therapies exist?
Do they work? How do they work? Why do they stop
working? Can they be rationally combined (and with what)?

What is on the horizon? How will we _make.progress (mouse
models, biomarkers, randomized clinical trials):
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EPIGENETICS

CHROMOSOME CHROMATIN FIBRE NUCLEOSOME

Genes are turmned on and off by modifications
to the tails of histones, such as acetylation.
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PATHOPHYSIOLOGY

........ Epigenetic-mediated
gene silencing in cancer
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CELLULAR IDENTITY
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Epigenetic abnormalities in MDS

 Aberrant DNA methylation, DNA hydroxymethylation,
histone modifications (gene promoters, enhancers,
super-enhancers, gene bodies, intergenic regions)

* Are they distinct from other cancers? Distinct from
AML?

 Mutations in epigenetic modifiers (e.g. DNMT3A,
IDH1/2, TET2, ASXL1, EZH2,...)



Epigenetic abnormalities in MDS
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Acquisition of mutations in epigenetic
regulators with age

ANALYSIS

nature,, .
medicine

Age-related mutations associated with clonal
hematopoietic expansion and malignancies

Mingchao Xiel»>7, Charles Lu!7, Jiayin Wang!->7, Michael D McLellan!, Kimberly ] Johnson?,
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Acquisition of mutations in epigenetic
regulators with age

Table 1 Blood-specific mutations in nine recurrently mutated genes identified in TCGA cases

Case Case
Gene Mutation Type Age VAF (%) Gene Mutation Type Age VAF (%)
DNMT3A p.RB82C GBM 81 15.79 JAKZ p.V617F GBM 57 21.52
STAD 60 18.29 GBM 72 73.39
STAD 69 1217 KIRC 59 28.57
p.RBB2H BRCA 62 21.43 LGG 45 1587
GBM 64 35.56 LUAD 72 27.62
LUSC 76 31.91 LUAD 76 4162
21341 KIRC 79 15.94 UCEC 59 35.90
LUAD 76 11.11 UCEC 74 42,92
p.E469* GBM 72 20.60 ASXLI p.Q575* LUAD 75 20
p.F8511s BRCA b4 34,88 p.Q733* LUAD 72 14,29
p.K577fs HNSC 2 24.14 p.Q733fs UCEC 81 27.27
p.N516fs LUSC 71 33.33 p.R548fs LUAD 76 35.03
p.S770* STAD 75 16.03 p.Y591" STAD 65 17.88
p.W314* UCEC 74 22.06 p.Y591fs LUSC 56 29.70
p.Y584fs GBM 75 38 TP53 p.C275Y ov 52 14,29
el2-1 PRAD 60 35.79 p.Q136* LUAD Null 18
e21-2 GBM 76 11.81 p.Ql4as STAD 62 15.96
e22-1 UCEC 77 33.85 p.R273L LUAD 70 34.62
TET? p.F3glfs GBM 83 50 GNAS p.R202H GBM 76 14.44
p.H863fs GBM 64 11.67 HNSC 59 11,54
p.K889* ov 85 15.09 LUAD 69 21.43
p.Q531* KIRC 48 11.90 PPMI1D p.Q520° BRCA 79 3542
p.Q644" UCEC 89 16.78 p.S468* UCEC 49 21,23
p.Q7641s GBM 75 33.01 BCORLI p.GBB3E LUAD Null 16.67
p.QB31fs LUAD 75 26.42 p.S264* PRAD 56 2245
p.QBE8" GBM 83 20.39 SF3B1 p-K700E GBM a9 13.86
p.R550" LUAD 76 16.25 KIRC 77 43.04
p.T2291s GBM 72 19.05

‘e’ signifies exon (for exsmple, ¢12-1 represents & splice-site mutation 1 nt upstream of exan 12); asterisk Indicates ponsenss mutation and ‘fs' stands for frameshifl. VAF is defined as
the proportion of reads supporting the variant allele, Eleven cancer types wese investigated in this study: BRCA, GBM, HNSC, KIRC, LGG, LUAD, LUSC, OV, PRAD, STAD and UCEC

M. Xie et al Nature Medicine 2014



Age-related mutations associated with clonal
hematopoietic expansion and malignanices
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Impact of mutations on prognosis:
independent of clinical variables?
response to therapies?

Epigenetic mutations
Patterns of epigenetic modifications
(aren’t they linked?)



Clinical Effect of Point Mutations
in Myelodysplastic Syndromes

Rafael Bejar, M.D., Ph.D., Kristen Stevenson, M.S., Omar Abdel-Wahab, M.D., Naomi
Galili, Ph.D., Bjorn Nilsson, M.D., Ph.D., Guillermo Garcia-Manero, M.D., Hagop
Kantarjian, M.D., Azra Raza, M.D., Ross L. Levine, M.D., Donna Neuberg, Sc.D., and Benjamin L.
Ebert, M.D., Ph.D.
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Hazard Ratios for Death in a Multivariable Model

Table 2. Hazard Ratios for Death in a Multivariable Model.*
Hazard Ratio
Risk Factor (95% CI) P Value
Age =55 yrvs. <55 yr 1.81 (1.20-2.73) 0.004
IPSS risk group
Intermediate-1 vs. low 2.29 (1.69-3.11) <0.001
Intermediate-2 vs. low 3.45 (2.42-4.91) <0.001
High vs. low 5.85 (3.63-9.40) <0.001
Mutational status
TP53 mutation present vs. absent 2.48 (1.60-3.84) <0.001
EZH2 mutation present vs. absent 2.13 (1.36-3.33) <0.001
ETV6 mutation present vs. absent 2.04 (1.08-3.86) 0.03
RUNX1 mutation present vs. absent 1.47 (1.01-2.15) 0.047
ASXL1 mutation present vs. absent 1.38 (1.00-1.89) 0.049

* The model was generated from a stepwise Cox regression model that included
the International Prognostic Scoring System (IPSS) risk category (based on the
percentage of blasts in bone marrow, the karyotype, and the number of cyto-
penias [see Table 2 in the Supplementary Appendix]), age, sex, and mutation
status for genes that were mutated in 1% or more of the 428 samples for which
the IPSS classification was recalculated. Age was included in the analysis as a
categorical variable on the basis of a best-split algorithm showing a significant
difference in overall survival between patients less than 55 years of age and
those 55 years of age or older (see Table 8 in the Supplementary Appendix).

Bejar R et al. N Engl J Med 2011;364:2496-2506



EZH2: POOR PROGNOSIS IN LR-PSS MDS PATIENTS
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Effect of EZH2 mutations on survival in MDS

LETTERS

B s

Inactivating mutations of the histone methyltransferase
gene EZH?2 in myeloid disorders

Thomas Ernst!-31!, Andrew ] Chasel®!!, Joannah Score!2, Claire E Hidalgo—Curtisl'z, Catherine Bryantm,
AmyV Jones!?, Katherine Waghorn"z, Katerina Zoi?, Fiona M Ross!"2, Andreas Reiter®, Andreas Hochhaus?,
Hans G Drexler®, Andrew Duncombe’, Francisco Cervantes®, David Oscier?, Jacqueline Boultwood!?,
Francis H Grand!** & Nicholas C P Cross!+
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Figure 2 Survival and exprassion analysis. (a,b) Kaplan-Meier analysis showing overall survival (a)
and progression-free survival (b) of the 134 individuals with MDS/MPM for whom follow-up data
was availabla (CMML, n=77; aCML, n = 44; MDS/MPN-U, n = 13). None of the individuals with
EZHZ mutations in this analysis had cytogenatically visible abnormalities of chromosome 7. (c) Tha
survival of individuals with homozygous mutations was shorter than those with heterozygous EZHZ
mutations, although the difference was not significant (P = 0.089).



ASXL1 PROGNOSTIC IMPORTANCE

VOLUME 28 - NUMBER 18 - JUNE 20 2011

Prognostic Significance of ASXL1 Mutations in Patients
With Myelodysplastic Syndromes

Table 3. Univariate and Multivariate Analyses for OS in Patients With MDS and With Mutated or Unmutated ASXLT

os
Univariate Analysis Multivariate Analysis
Varisbla HR 9% CI P HR 95% Cl P
ASXLT mutation status: mutsted v unmautatad 2.08 1.21103.50 008 185 1.03t03.34 04
|IPSS-based karyotype: high v intermediate v favorable risk 1.84 14010243 <.001 1.83 136t02.46 <.001
Transfusion dependence: dependent v indepandent 372 1.70w08.14 001 319 145t07.06 004
1DH1 mutation status: mutated v unmutated 376 17110824 001 364 1.62t08.16 .002

NOTE. Number of patients wath mutated gene ~ 24; with unmutated gene, 130; only frameshift mutations considered. Hazard ratios greater than 1 indicate an
incraased risk of an event for the first category listed.
Abbrevistions: OS, overall survival; MDS, myelodysplastic syndrome; HR, hazard ratio; IPSS, International Prognostic Scoring System.

Table 4 Univanate and Multivanate Analyses for Time to AML Transformation in Patents With MDS and With Mutated or Unmutated ASXLT
Time to AML Transformabon

Unvarate Anslysis Multivanate Analysis
Varizbla HA 95% Ci P HR 95% CI P
ASXLT mutation status: mutated v unmutated 235 11710474 017 239 1.1205.09 024
|PSS-based karyotype: high v intermediate v favorable risk 1.680 10810236 .018 150 09810228 063
Transfusion dependence: dependent v independant 8863 160102754 .008 6.12 146102564 013
DHT mutation status: mutated v unmutated 340 1.2110 961 o 294 1.3t 8.41 D44

NOTE. Number of patients with mutated gens ~ 24; with unmutated gens, 124; only frameshift mutations cansidered. Hazard ratios greater than 1 indicate an
increased risk of an event for the first category listed.
Abbreviations: AML, acute myeloid Jeukemnia; MDS, myelodysplastc syndrome; HR, hazard ratio; IPSS, Intamationsl Prognostic Scoring System.
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Effect of DNMT3A mutations on outcome in MDS
(N=150 patients)
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MYELOID NEOPLASIA

TET2 mutations predict response to hypomethylating agents in
myelodysplastic syndrome patients
Rafael Bejar,' Allegra Lord,? Kristen Stevenson,® Michal Bar-Natan,* Albert Pérez-Ladaga,’ Jacques Zaneveld,” Hui Wang,®

Bennett Caughey,' Petar Stojanov,® Gad Getz,® Guillermo Garcia-Manero,” Hagop Kantarjian,” Rui Chen,?
Richard M. Stone,* Donna Neuberg,® David P. Steensma,* and Benjamin L. Ebert*®

"Division of Hematology and Oncology, University of Califomia San Diego Moores Cancer Center, La Jolla, CA; ®Division of Hematology, Brigham and
Women's Hospital, Harvard Medical School, Boston, MA; *Department of Biostafistics and Computational Biology and *Department of Medical Oncology,
Division of Hematological Malignancies, Dana-Farber Cancer Institute, Boston, MA; 5If.'!-s:partm‘ent of Molecular and Human Genetics, Baylor College of
Medicine, Houston, TX: ®Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; and _"Deparlrnent of Leukemia, University
of Texas MD Anderson Cancer Center, Houston, TX

* Higher abundance TET2
mutations are associated
with increased response to
hypomethylating agents,
particularly when ASXL1
is not mutated.

e TP53 and PTPN11
mutations are associated
with shorter overall survival
after hypomethylating agent

treatment, but do not predict BLOOD, 23 OCTOBER 2014 - VOLUME 124, NUMBER 17
response.




Variant allele frequencies help order the sequence of mutations
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Probability of Overall Survival

Probability of Overall Survival

Overall survival data (146/213 patients)
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TET2 PROGNOSTIC IMPORTANCE IN HIGH RISK MDS
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Figure 2. Kaplan-Meier survival curves in patients with MDS according to the TET2 mutation status (solid line indicating mutation-positive and
dotted line indicating mutation-negative). Time to sAML transformation (A) and overall survival (B) in the whole cohort of patients according
to TET2 mutation status; time to sAML transformation (C) and overall survival (D) in patients in RAEB-2 subgroup according to TET2 mutation
status; time to sAML transformation (E) and overall survival (F) in MDS in IPSS-R very high-risk group according to TET2 mutation status.
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THERAPEUTICS

Epigenetic regulation of methylation Epigenetic regulation of acetylation

Cytosine 5-Methylcytosine 5-Hydroxymethyicytosine

NHy NH; OH NHy R é HAT
/go NJ\ N O = ﬁ&
IDH122 2-HG 5. e é HDAC

Figure 1. Regulation of methylation and acetylation in leukemia and their therapeutic potential. The figure shows a selection of proteins that
add, remove and recognize chromatin modifications, as well as the the proteins that regulate DNA methylation. The genes encoding these
proteins can be altered through mutation, deletion or altered expression in leukemia. Ac, acetylation; DNMT, DNA methylitransferase;
HAT, histone acetyltransferase; HDAC, histone deacetylase; KDM, lysine demethylase; Me, methylation; PKMT, lysine methyltransferase;
PRMT, arginine methyltransferase.
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IDH MUTATIONS LEAD TO CELL DIFFERENTIATION BLOCK

IDH Mutation:
Differentiation Blocked

Inhibitor

Epigenetic Unchecked Cell Proliferation
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UNIVERSITY OF MIAMI HEALTH SYSTEM 2010; 18:553-567. Yen KE, Schenkein DP. The Oncologist. 2012;17:5-8.




HISTONE METHYLTRANSFERASE INHIBITORS

EPZ-5676 A highly potent and selective inhibitor of DOT1L in clinical development.
EPZ-6438 A potent and selective small molecule inhibitor of EZH2 in clinical development.
GSK126, GSK343 Small molecule inhibitors of EZH2.

PFI-2 A potent and selective SETD?7 inhibitor.

SGC0946 A potent and selective inhibitor of DOT1L.

UNC0638, UNC0642, UNC0646 Selective and cell permeable inhibitors of G9a and GLP

HISTONE DEMETHYLASE INHIBITORS

Daminozide A small molecule inhibitor of the KDM2/7 family of JmjC demethylases.
GSK-J1/ GSK-J4 Selective inhibitors of the UTX and JMJD3 H3K27 demethylases
GSK-LSD1 A specific and irreversible inhibitor of LSD1.

LSD1-C12, LSD1-C76 Specific, and reversible LSD1 inhibitors, with in vivo efficacy
JIB-04 (NSC693627) A cell permeable Jumonji demethylase inhibitor,

ML324 A potent and cell permeable inhibitor of the JMJD2 histone demethylase.
PBIT Areversible and cell-permeable inhibitor of JARID1 histone demethylases.
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COMBINATION THERAPY

Regular Article

CLINICAL TRIALS AND OBSERVATIONS

Phase 2 study of azacytidine plus sorafenib in patients with acute
myeloid leukemia and FLT-3 internal tandem duplication mutation

Farhad Ravandi,' Mona Lisa Alattar,' Michael R. Grunwald,2 Michelle A. Rudek? Trivikram Rajkhowa,2 Mary Ann Richie,’
Shermy Pierce, Naval Daver,' Guillermo Garcia-Manero,' Stefan Fader,' Aziz Nazha,' Marina Konopleva,'

Gautam Borthakur,' Jan Burger,’ Tapan Kadia,' Sara Dellasala,’ Michael Andreeff,’ Jorge Cortes,’ Hagop Kantarjian,'
and Mark Levis®

' Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX; and *Division of Hematological Malignancies, *Division of Chemical
Therapetuics, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD

Patients received 5-azacytidine (AZA) 75 mg/m” intravenously daily for 7 days and
sorafenib 400 mg orally twice daily continuously; cycles were repeated at ~1-month
* Azacytidine and sorafenib are | intervals. Forty-three acute myeloid leukemia (AML) patients with a median age of 64

effective in patients with years (range, 24-87 years) were enrolled; 37 were evaluable for response. FMS-like
relapsed and refractory tyrosine kinase-3 (FLT3)-intemal tandem duplication (ITD) mutation was detected in 40
FLT3mutated AML. (93%) patients, with a median allelic ratio of 0.32 (range, 0.009-0.93). They had received

a median of 2 prior treatment regimens (range, 0-7); 9 had failed prior therapy with a FLT3
kinase inhibitor. The response rate was 46%, including 10 (27%) complete response with incomplete count recovery (CRi), 6 (16%)
complete responses (CR), and 1 (3%) partial response. The median time to achieve CR/CRi was 2 cycles (range, 1-4), and the median
duration of CR/CRi was 2.3 months (range, 1-14.3 months). Sixty-four percent of patients achieved adequate (defined as >85%) FLT3
inhibition during their first cycle of therapy. The degree of FLT3 inhibition comrelated with plasma sorafenib concentrations. FLT3 ligand
levels did not rise to levels seen in prior studies of patients receiving cytotoxic chemotherapy. The combination of AZA and sorafenib is

| effective for patients with relapsed AML and FLT-3-ITD. This trial was registered at clinicaltrials.govas #NCT01254890. (Blood. 2013;121(23):

4655-4662)
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CONCLUSIONS

* Epigenetic abnormalities can predict prognosis in
untreated and treated MDS pts (DNMT3A bad, EZHZ bad,
ASXL1 bad, TETZ2 neutral)

» Certain abnormalities may predict for a response to
specific therapies (e.g. TET2)

» HDACi plus HMAs not a home run....

* New epigenetic focused therapies are in the pipeline
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